Found problems: 25757
2023 Korea National Olympiad, 4
Pentagon $ABCDE$ is inscribed in circle $\Omega$. Line $AD$ meets $CE$ at $F$, and $P (\neq E, F)$ is a point on segment $EF$. The circumcircle of triangle $AFP$ meets $\Omega$ at $Q(\neq A)$ and $AC$ at $R(\neq A)$. Line $AD$ meets $BQ$ at $S$, and the circumcircle of triangle $DES$ meets line $BQ, BD$ at $T(\neq S), U(\neq D)$, respectively. Prove that if $F, P, T, S$ are concyclic, then $P, T, R, U$ are concyclic.
1997 India Regional Mathematical Olympiad, 1
Let $P$ be an interior point of a triangle $ABC$ and let $BP$ and $CP$ meet $AC$ and $AB$ in $E$ and $F$ respectively. IF $S_{BPF} = 4$,$S_{BPC} = 8$ and $S_{CPE} = 13$, find $S_{AFPE}.$
2015 Sharygin Geometry Olympiad, 1
Circles $\alpha$ and $\beta$ pass through point $C$. The tangent to $\alpha$ at this point meets $\beta$ at point $B$, and the tangent to $\beta$ at $C$ meets $\alpha$ at point $A$ so that $A$ and $B$ are distinct from $C$ and angle $ACB$ is obtuse. Line $AB$ meets $\alpha$ and $\beta$ for the second time at points $N$ and $M$ respectively. Prove that $2MN < AB$.
(D. Mukhin)
2012 Korea Junior Math Olympiad, 2
A pentagon $ABCDE$ is inscribed in a circle $O$, and satisfies $\angle A = 90^o, AB = CD$. Let $F$ be a point on segment $AE$. Let $BF$ hit $O$ again at $J(\ne B)$, $CE \cap DJ = K$, $BD\cap FK = L$. Prove that $B,L,E,F$ are cyclic.
1979 IMO Longlists, 67
A circle $C$ with center $O$ on base $BC$ of an isosceles triangle $ABC$ is tangent to the equal sides $AB,AC$. If point $P$ on $AB$ and point $Q$ on $AC$ are selected such that $PB \times CQ = (\frac{BC}{2})^2$, prove that line segment $PQ$ is tangent to circle $C$, and prove the converse.
2005 Poland - Second Round, 2
A rhombus $ABCD$ with $\angle BAD=60^{\circ}$ is given. Points $E$ on side $AB$ and $F$ on side $AD$ are such that $\angle ECF=\angle ABD$. Lines $CE$ and $CF$ respectively meet line $BD$ at $P$ and $Q$. Prove that $\frac{PQ}{EF}=\frac{AB}{BD}$.
2020 JBMO Shortlist, 8
Find all prime numbers $p$ and $q$ such that
$$1 + \frac{p^q - q^p}{p + q}$$
is a prime number.
[i]Proposed by Dorlir Ahmeti, Albania[/i]
2006 Sharygin Geometry Olympiad, 16
Regular triangles are built on the sides of the triangle $ABC$. It turned out that their vertices form a regular triangle. Is the original triangle regular also?
2013 JBMO Shortlist, 2
Circles ${\omega_1}$ , ${\omega_2}$ are externally tangent at point M and tangent internally with circle ${\omega_3}$ at points ${K}$ and $L$ respectively. Let ${A}$ and ${B}$ be the points that their common tangent at point ${M}$ of circles ${\omega_1}$ and ${\omega_2}$ intersect with circle ${\omega_3.}$ Prove that if ${\angle KAB=\angle LAB}$ then the segment ${AB}$ is diameter of circle ${\omega_3.}$
Theoklitos Paragyiou (Cyprus)
1976 IMO, 3
A box whose shape is a parallelepiped can be completely filled with cubes of side $1.$ If we put in it the maximum possible number of cubes, each of volume $2$, with the sides parallel to those of the box, then exactly $40$ percent of the volume of the box is occupied. Determine the possible dimensions of the box.
2020 Lusophon Mathematical Olympiad, 3
Let $ABC$ be a triangle and on the sides we draw, externally, the squares $BADE, CBFG$ and $ACHI$. Determine the greatest positive real constant $k$ such that, for any triangle $\triangle ABC$, the following inequality is true:
$[DEFGHI]\geq k\cdot [ABC]$
Note: $[X]$ denotes the area of polygon $X$.
2022 Yasinsky Geometry Olympiad, 3
Given a triangle $ABC$, in which the medians $BE$ and $CF$ are perpendicular. Let $M$ is the intersection point of the medians of this triangle, and $L$ is its Lemoine point (the intersection point of lines symmetrical to the medians with respect to the bisectors of the corresponding angles). Prove that $ML \perp BC$.
(Mykhailo Sydorenko)
Russian TST 2016, P1
In the cyclic quadrilateral $ABCD$, the diagonal $BD$ is divided in half by the diagonal $AC$. The points $E, F, G$ and $H{}$ are the midpoints of the sides $AB, BC, CD{}$ and $DA$ respectively. Let $P = AD \cap BC$ and $Q = AB \cap CD{}$. The bisectors of the angles $APC$ and $AQC$ intersect the segments $EG$ and $FH$ at the points $X{}$ and $Y{}$ respectively. Prove that $XY \parallel BD$.
2013 Stars Of Mathematics, 2
Three points inside a rectangle determine a triangle. A fourth point is taken inside the triangle. Prove that at least one of the three concave quadrilaterals formed by these four points has perimeter lesser than that of the rectangle.
[i](Dan Schwarz)[/i]
1990 IMO Shortlist, 9
The incenter of the triangle $ ABC$ is $ K.$ The midpoint of $ AB$ is $ C_1$ and that of $ AC$ is $ B_1.$ The lines $ C_1K$ and $ AC$ meet at $ B_2,$ the lines $ B_1K$ and $ AB$ at $ C_2.$ If the areas of the triangles $ AB_2C_2$ and $ ABC$ are equal, what is the measure of angle $ \angle CAB?$
2006 MOP Homework, 3
In triangle $ ABC$,$ \angle BAC \equal{} 120^o$. Let the angle bisectors of angles
$ A;B$and $ C$ meet the opposite sides at $ D;E$ and$ F$ respectively.
Prove that the circle on diameter $ EF$ passes through $ D.$
2017 India IMO Training Camp, 1
In an acute triangle $ABC$, points $D$ and $E$ lie on side $BC$ with $BD<BE$. Let $O_1, O_2, O_3, O_4, O_5, O_6$ be the circumcenters of triangles $ABD, ADE, AEC, ABE, ADC, ABC$, respectively. Prove that $O_1, O_3, O_4, O_5$ are con-cyclic if and only if $A, O_2, O_6$ are collinear.
2005 Federal Math Competition of S&M, Problem 2
Let $ABC$ be an acute triangle. Circle $k$ with diameter $AB$ intersects $AC$ and $BC$ again at $M$ and $N$ respectively. The tangents to $k$ at $M$ and $N$ meet at point $P$. Given that $CP=MN$, determine $\angle ACB$.
2024-IMOC, G2
Triangle $ABC$ has circumcenter $O$. $D$ is an arbitrary point on $BC$, and $AD$ intersects $\odot(ABC)$ at $E$. $S$ is a point on $\odot(ABC)$ such that $D, O, E, S$ are colinear. $AS$ intersects $BC$ at $P$. $Q$ is a point on $BC$ such that $D, O, A, Q$ are concylic. Prove that $\odot(ABC)$ is tangent to $\odot (APQ)$.
[i]Proposed by chengbilly[/i]
2007 Estonia Team Selection Test, 4
In square $ABCD,$ points $E$ and $F$ are chosen in the interior of sides $BC$ and $CD$, respectively. The line drawn from $F$ perpendicular to $AE$ passes through the intersection point $G$ of $AE$ and diagonal $BD$. A point $K$ is chosen on $FG$ such that $|AK|= |EF|$. Find $\angle EKF.$
2017 Kazakhstan National Olympiad, 1
The non-isosceles triangle $ABC$ is inscribed in the circle $\omega$. The tangent line to this circle at the point $C$ intersects the line $AB$ at the point $D$. Let the bisector of the angle $CDB$ intersect the segments $AC$ and $BC$ at the points $K$ and $L$, respectively. The point $M$ is on the side $AB$ such that $\frac{AK}{BL} = \frac{AM}{BM}$. Let the perpendiculars from the point $M$ to the straight lines $KL$ and $DC$ intersect the lines $AC$ and $DC$ at the points $P$ and $Q$ respectively. Prove that $2\angle CQP=\angle ACB$
2010 Sharygin Geometry Olympiad, 9
A point inside a triangle is called "[i]good[/i]" if three cevians passing through it are equal. Assume for an isosceles triangle $ABC \ (AB=BC)$ the total number of "[i]good[/i]" points is odd. Find all possible values of this number.
2016 Argentina National Olympiad Level 2, 2
Point $D$ on the side $BC$ of the acute triangle $ABC$ is chosen so that $AD = AC$. Let $P$ and $Q$ be the feet of the perpendiculars from $C$ and $D$ on the side $AB$, respectively. Suppose that $AP^2 + 3BP^2 = AQ^2 + 3BQ^2$. Determine the measure of angle $\angle ABC$.
2019 Junior Balkan Team Selection Tests - Romania, 3
Let $d$ be the tangent at $B$ to the circumcircle of the acute scalene triangle $ABC$. Let $K$ be the orthogonal projection of the orthocenter, $H$, of triangle $ABC$ to the line $d$ and $L$ the midpoint of the side $AC$. Prove that the triangle $BKL$ is isosceles.
2018 Peru Cono Sur TST, 7
Let $ABCD$ be a fixed square and $K$ a variable point on segment $AD$. The square $KLMN$ is constructed such that $B$ is on segment $LM$ and $C$ is on segment $MN$. Let $T$ be the intersection point of lines $LA$ and $ND$. Find the locus of $T$ as $K$ varies along segment $AD$.