Found problems: 25757
DMM Individual Rounds, 2018
[b]p1.[/b] Let $f(x) = \frac{3x^3+7x^2-12x+2}{x^2+2x-3}$ . Find all integers $n$ such that $f(n)$ is an integer.
[b]p2.[/b] How many ways are there to arrange $10$ trees in a line where every tree is either a yew or an oak and no two oak trees are adjacent?
[b]p3.[/b] $20$ students sit in a circle in a math class. The teacher randomly selects three students to give a presentation. What is the probability that none of these three students sit next to each other?
[b]p4.[/b] Let $f_0(x) = x + |x - 10| - |x + 10|$, and for $n \ge 1$, let $f_n(x) = |f_{n-1}(x)| - 1$. For how many values of $x$ is $f_{10}(x) = 0$?
[b]p5.[/b] $2$ red balls, $2$ blue balls, and $6$ yellow balls are in a jar. Zion picks $4$ balls from the jar at random. What is the probability that Zion picks at least $1$ red ball and$ 1$ blue ball?
[b]p6.[/b] Let $\vartriangle ABC$ be a right-angled triangle with $\angle ABC = 90^o$ and $AB = 4$. Let $D$ on $AB$ such that $AD = 3DB$ and $\sin \angle ACD = \frac35$ . What is the length of $BC$?
[b]p7.[/b] Find the value of of
$$\dfrac{1}{1 +\dfrac{1}{2+ \dfrac{1}{1+ \dfrac{1}{2+ \dfrac{1}{1+ ...}}}}}$$
[b]p8.[/b] Consider all possible quadrilaterals $ABCD$ that have the following properties; $ABCD$ has integer side lengths with $AB\parallel CD$, the distance between $\overline{AB}$ and $\overline{CD}$ is $20$, and $AB = 18$. What is the maximum area among all these quadrilaterals, minus the minimum area?
[b]p9.[/b] How many perfect cubes exist in the set $\{1^{2018},2^{2017}, 3^{2016},.., 2017^2, 2018^1\}$?
[b]p10.[/b] Let $n$ be the number of ways you can fill a $2018\times 2018$ array with the digits $1$ through $9$ such that for every $11\times 3$ rectangle (not necessarily for every $3 \times 11$ rectangle), the sum of the $33$ integers in the rectangle is divisible by $9$. Compute $\log_3 n$.
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1950 Moscow Mathematical Olympiad, 183
A circle is inscribed in a triangle and a square is circumscribed around this circle so that no side of the square is parallel to any side of the triangle. Prove that less than half of the square’s perimeter lies outside the triangle.
2001 National High School Mathematics League, 1
$AD,BE,CF$ are three heights of $\triangle ABC$, and they intersect at $H$. Let $O$ be the circumcenter of $\triangle ABC$, $ED\cap AB=M,FD\cap AC=N$. Prove:
[b](a)[/b] $OB\perp DF, OC\perp DE$.
[b](b)[/b] $OH\perp MN$.
2022 Israel TST, 3
In triangle $ABC$, the angle bisectors are $BE$ and $CF$ (where $E, F$ are on the sides of the triangle), and their intersection point is $I$. Point $N$ lies on the circumcircle of $AEF$, and the angle $\angle IAN$ is right. The circumcircle of $AEF$ meets the line $NI$ a second time at the point $L$. Show that the circumcenter of $AIL$ lies on line $BC$.
2012 Sharygin Geometry Olympiad, 5
Let $ABC$ be an isosceles right-angled triangle. Point $D$ is chosen on the prolongation of the hypothenuse $AB$ beyond point $A$ so that $AB = 2AD$. Points $M$ and $N$ on side $AC$ satisfy the relation $AM = NC$. Point $K$ is chosen on the prolongation of $CB$ beyond point $B$ so that $CN = BK$. Determine the angle between lines $NK$ and $DM$.
(M.Kungozhin)
2012 Today's Calculation Of Integral, 793
Find the area of the figure bounded by two curves $y=x^4,\ y=x^2+2$.
1997 Romania Team Selection Test, 4
Let $w$ be a circle and $AB$ a line not intersecting $w$. Given a point $P_{0}$ on $w$, define the sequence $P_{0},P_{1},\ldots $ as follows: $P_{n\plus{}1}$ is the second intersection with $w$ of the line passing through $B$ and the second intersection of the line $AP_{n}$ with $w$. Prove that for a positive integer $k$, if $P_{0}\equal{}P_{k}$ for some choice of $P_{0}$, then $P_{0}\equal{}P_{k}$ for any choice of $P_{0}$.
[i]Gheorge Eckstein[/i]
1984 Brazil National Olympiad, 5
$ABCD$ is any convex quadrilateral. Squares center $E, F, G, H$ are constructed on the outside of the edges $AB, BC, CD$ and $DA$ respectively. Show that $EG$ and $FH$ are equal and perpendicular.
2012 Iran Team Selection Test, 3
Suppose $ABCD$ is a parallelogram. Consider circles $w_1$ and $w_2$ such that $w_1$ is tangent to segments $AB$ and $AD$ and $w_2$ is tangent to segments $BC$ and $CD$. Suppose that there exists a circle which is tangent to lines $AD$ and $DC$ and externally tangent to $w_1$ and $w_2$. Prove that there exists a circle which is tangent to lines $AB$ and $BC$ and also externally tangent to circles $w_1$ and $w_2$.
[i]Proposed by Ali Khezeli[/i]
1984 IMO Longlists, 48
Let $ABC$ be a triangle with interior angle bisectors $AA_1, BB_1, CC_1$ and incenter $I$. If $\sigma[IA_1B] + \sigma[IB_1C] + \sigma[IC_1A] = \frac{1}{2}\sigma[ABC]$, where $\sigma[ABC]$ denotes the area of $ABC$, show that $ABC$ is isosceles.
2006 Germany Team Selection Test, 1
Let $ ABC$ be an equilateral triangle, and $ P,Q,R$ three points in its interior satisfying
\[ \measuredangle PCA \equal{} \measuredangle CAR \equal{} 15^{\circ},\ \measuredangle RBC \equal{} \measuredangle BCQ \equal{} 20^{\circ},\ \measuredangle QAB \equal{} \measuredangle ABP \equal{} 25^{\circ}.\] Compute the angles of triangle $ PQR$.
2018 Hanoi Open Mathematics Competitions, 8
Let $ABCD$ be rhombus, with $\angle ABC = 80^o$: Let $E$ be midpoint of $BC$ and $F$ be perpendicular projection of $A$ onto $DE$. Find the measure of $\angle DFC$ in degree.
2017 Saudi Arabia BMO TST, 1
Let $n = p_1p_2... p_{2017}$ be the positive integer where $p_1, p_2, ..., p_{2017}$ are $2017$ distinct odd primes. A triangle is called [i]nice [/i] if it is a right triangle with integer side lengths and the inradius is $n$. Find the number of nice triangles (two triangles are consider different if their tuples of length of sides are different)
2018 Baltic Way, 14
A quadrilateral $ABCD$ is circumscribed about a circle $\omega$. The intersection point of $\omega$ and the diagonal $AC$, closest to $A$, is $E$. The point $F$ is diametrally opposite to the point $E$ on the circle $\omega$. The tangent to $\omega$ at the point $F$ intersects lines $AB$ and $BC$ in points $A_1$ and $C_1$, and lines $AD$ and $CD$ in points $A_2$ and $C_2$, respectively. Prove that $A_1C_1=A_2C_2$.
2003 Singapore MO Open, 4
The pentagon $ABCDE$ which is inscribed in a circle with $AB < DE$ is the base of a pyramid with apex $S$. If the longest side from $S$ is $SA$, prove that $BS > CS$.
1986 IMO Longlists, 30
Prove that a convex polyhedron all of whose faces are equilateral triangles has at most $30$ edges.
2008 Princeton University Math Competition, A1/B2
What is the area of a circle with a circumference of $8$?
1994 India National Olympiad, 1
Let $G$ be the centroid of the triangle $ABC$ in which the angle at $C$ is obtuse and $AD$ and $CF$ be the medians from $A$ and $C$ respectively onto the sides $BC$ and $AB$. If the points $\ B,\ D, \ G$ and $\ F$ are concyclic, show that $\dfrac{AC}{BC} \geq \sqrt{2}$. If further $P$ is a point on the line $BG$ extended such that $AGCP$ is a parallelogram, show that triangle $ABC$ and $GAP$ are similar.
2022 China Team Selection Test, 4
Let $ABC$ be an acute triangle with $\angle ACB>2 \angle ABC$. Let $I$ be the incenter of $ABC$, $K$ is the reflection of $I$ in line $BC$. Let line $BA$ and $KC$ intersect at $D$. The line through $B$ parallel to $CI$ intersects the minor arc $BC$ on the circumcircle of $ABC$ at $E(E \neq B)$. The line through $A$ parallel to $BC$ intersects the line $BE$ at $F$.
Prove that if $BF=CE$, then $FK=AD$.
2002 District Olympiad, 2
Let $ ABCD $ be an inscriptible quadrilateral and $ M $ be a point on its circumcircle, distinct from its vertices. Let $ H_1,H_2,H_3,H_4 $ be the orthocenters of $ MAB,MBC, MCD, $ respectively, $ MDA, $ and $ E,F, $ the midpoints of the segments $ AB, $ respectivley, $ CD. $ Prove that:
[b]a)[/b] $ H_1H_2H_3H_4 $ is a parallelogram.
[b]b)[/b] $ H_1H_3=2\cdot EF. $
1986 AMC 12/AHSME, 19
A park is in the shape of a regular hexagon $2$ km on a side. Starting at a corner, Alice walks along the perimeter of the park for a distance of $5$ km. How many kilometers is she from her starting point?
$ \textbf{(A)}\ \sqrt{13}\qquad\textbf{(B)}\ \sqrt{14}\qquad\textbf{(C)}\ \sqrt{15}\qquad\textbf{(D)}\ \sqrt{16}\qquad\textbf{(E)}\ \sqrt{17}$
2025 Poland - First Round, 2
Let $ABCD$ be a rectangle inscribed in circle $\omega$ with center $O$. Line $l$ passes trough $O$ and intersects lines $BC$ and $AD$ at points $E$ and $F$ respectively. Points $K$ and $L$ are the intersection points of $l$ and $\omega$ and points $K, E, F, L$ lie in this order on the line $l$. Lines tangent to $w$ in $K$ and $L$ intersect $CD$ at $M$ and $N$ respectively. Prove that $E, F, M, N$ lie on a common circle.
2013 BMT Spring, 2
A point $P$ is given on the curve $x^4+y^4=1$. Find the maximum distance from the point $P$ to the origin.
2012 India Regional Mathematical Olympiad, 1
Let ABCD be a unit square. Draw a quadrant of a circle with A as centre and B;D
as end points of the arc. Similarly, draw a quadrant of a circle with B as centre and
A;C as end points of the arc. Inscribe a circle ? touching the arc AC internally, the
arc BD internally and also touching the side AB. Find the radius of the circle ?.
2022 Swedish Mathematical Competition, 4
Let $ABC$ be an acute triangle. Let $I$ be a point inside the triangle and let $D$ be a point on the line $AB$. The line through $D$ which is parallel to $AI$ intersects the line $AC$ at the point $E$, and the line through $D$ parallel to $BI$ intersects the line $BC$ in point $F$. prove that
$$\frac{EF \cdot CI}{2} \ge area (\vartriangle ABC) $$