This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2004 Harvard-MIT Mathematics Tournament, 9

Given is a regular tetrahedron of volume $1$. We obtain a second regular tetrahedron by reflecting the given one through its center. What is the volume of their intersection?

2015 Postal Coaching, Problem 1

Tags: geometry
A circle, its chord $AB$ and the midpoint $W$ of the minor arc $AB$ are given. Take an arbitrary point $C$ on the major arc $AB$. The tangent to the circle at $C$ meets the tangents at $A$ and $B$ at points $X$ and $Y$ respectively. Lines $WX$ and $WY$ meet $AB$ at points $N$ and $M$. Prove that the length of segment $NM$ doesn’t depend on point $C$.

Kvant 2021, M2634

Tags: parabola , geometry
Consider a parabola. The [i]parabolic length[/i] of a segment is the length of the projection of this segment on a straight line perpendicular to the axis of symmetry of the parabola. In the parabola, two chords $AB$ and $CD$ are drawn, intersecting at the point $N{}$. Prove that the product of the parabolic lengths of the segments $AN$ and $BN$ is equal to the product of the parabolic lengths of the segments $CN$ and $DN$. [i]Proposed by M. Panov[/i]

2010 IMO Shortlist, 5

Let $ABCDE$ be a convex pentagon such that $BC \parallel AE,$ $AB = BC + AE,$ and $\angle ABC = \angle CDE.$ Let $M$ be the midpoint of $CE,$ and let $O$ be the circumcenter of triangle $BCD.$ Given that $\angle DMO = 90^{\circ},$ prove that $2 \angle BDA = \angle CDE.$ [i]Proposed by Nazar Serdyuk, Ukraine[/i]

2020 AIME Problems, 7

Two congruent right circular cones each with base radius $3$ and height $8$ have axes of symmetry that intersect at right angles at a point in the interior of the cones a distance $3$ from the base of each cone. A sphere with radius $r$ lies inside both cones. The maximum possible value for $r^2$ is $\frac mn$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

2011 Canadian Mathematical Olympiad Qualification Repechage, 6

In the diagram, $ABDF$ is a trapezoid with $AF$ parallel to $BD$ and $AB$ perpendicular to $BD.$ The circle with center $B$ and radius $AB$ meets $BD$ at $C$ and is tangent to $DF$ at $E.$ Suppose that $x$ is equal to the area of the region inside quadrilateral $ABEF$ but outside the circle, that y is equal to the area of the region inside $\triangle EBD$ but outside the circle, and that $\alpha = \angle EBC.$ Prove that there is exactly one measure $\alpha,$ with $0^\circ \leq \alpha \leq 90^\circ,$ for which $x = y$ and that this value of $\frac 12 < \sin \alpha < \frac{1}{\sqrt 2}.$ [asy] import graph; size(150); real lsf = 0.5; pen dp = linewidth(0.7) + fontsize(10); defaultpen(dp); pen ds = black; pen qqttff = rgb(0,0.2,1); pen fftttt = rgb(1,0.2,0.2); draw(circle((6.04,2.8),1.78),qqttff); draw((6.02,4.58)--(6.04,2.8),fftttt); draw((6.02,4.58)--(6.98,4.56),fftttt); draw((6.04,2.8)--(8.13,2.88),fftttt); draw((6.98,4.56)--(8.13,2.88),fftttt); dot((6.04,2.8),ds); label("$B$", (5.74,2.46), NE*lsf); dot((6.02,4.58),ds); label("$A$", (5.88,4.7), NE*lsf); dot((6.98,4.56),ds); label("$F$", (7.06,4.6), NE*lsf); dot((7.39,3.96),ds); label("$E$", (7.6,3.88), NE*lsf); dot((8.13,2.88),ds); label("$D$", (8.34,2.56), NE*lsf); dot((7.82,2.86),ds); label("$C$", (7.5,2.46), NE*lsf); clip((-4.3,-10.94)--(-4.3,6.3)--(16.18,6.3)--(16.18,-10.94)--cycle); [/asy]

1985 IMO Shortlist, 19

For which integers $n \geq 3$ does there exist a regular $n$-gon in the plane such that all its vertices have integer coordinates in a rectangular coordinate system?

V Soros Olympiad 1998 - 99 (Russia), 11.6

In triangle $ABC$, angle $B$ is obtuse and equal to $a$. The bisectors of angles $A$ and $C$ intersect opposite sides at points $P$ and $M$, respectively. On the side $AC$, points $K$ and $L$ are taken so that $\angle ABK = \angle CBL = 2a - 180^o$. What is the angle between straight lines $KP$ and $LM$?

2018 Malaysia National Olympiad, B1

Tags: proof , geometry , circles
Let $ABC$ be an acute triangle. Let $D$ be the reflection of point $B$ with respect to the line $AC$. Let $E$ be the reflection of point $C$ with respect to the line $AB$. Let $\Gamma_1$ be the circle that passes through $A, B$, and $D$. Let $\Gamma_2$ be the circle that passes through $A, C$, and $E$. Let $P$ be the intersection of $\Gamma_1$ and $\Gamma_2$ , other than $A$. Let $\Gamma$ be the circle that passes through $A, B$, and $C$. Show that the center of $\Gamma$ lies on line $AP$.

III Soros Olympiad 1996 - 97 (Russia), 11.3

A chord $AB$ is drawn in a certain circle. The smaller of the two arcs $AB$ corresponds to a central angle of $120^o$. A tangent $p$ to this arc is drawn. Two circles with radii $R$ and $r$ are constructed, touching this smaller arc $AB$ and straight lines $AB$ and $p$. Find the radius of the original circle.

2022 Bulgarian Autumn Math Competition, Problem 12.2

Tags: geometry
Point $M$ lies inside an isosceles right $\triangle ABC$ with hypotenuse $AB$ such that $MA=5$, $MB=7$, $MC=4\sqrt{2}$. Find $\angle AMC$.

2010 Romania National Olympiad, 4

On the exterior of a non-equilateral triangle $ABC$ consider the similar triangles $ABM,BCN$ and $CAP$, such that the triangle $MNP$ is equilateral. Find the angles of the triangles $ABM,BCN$ and $CAP$. [i]Nicolae Bourbacut[/i]

2012 Sharygin Geometry Olympiad, 7

Tags: geometry , altitude
The altitudes $AA_1$ and $CC_1$ of an acute-angled triangle $ABC$ meet at point $H$. Point $Q$ is the reflection of the midpoint of $AC$ in line $AA_1$, point $P$ is the midpoint of segment $A_1C_1$. Prove that $\angle QPH = 90^o$. (D.Shvetsov)

2009 Moldova National Olympiad, 9.3

Let $ABC$ be an equilateral triangle. The points $M$ and $K$ are located in different half-planes with respect to line $BC$, so that the point $M \in (AB)$ ¸and the triangle $MKC$ is equilateral. Prove that the lines $AC$ and $BK$ are parallel.

2003 ITAMO, 3

Let a semicircle is given with diameter $AB$ and centre $O$ and let $C$ be a arbitrary point on the segment $OB$. Point $D$ on the semicircle is such that $CD$ is perpendicular to $AB$. A circle with centre $P$ is tangent to the arc $BD$ at $F$ and to the segment $CD$ and $AB$ at $E$ and $G$ respectively. Prove that the triangle $ADG$ is isosceles.

2011 China Western Mathematical Olympiad, 4

In a circle $\Gamma_{1}$, centered at $O$, $AB$ and $CD$ are two unequal in length chords intersecting at $E$ inside $\Gamma_{1}$. A circle $\Gamma_{2}$, centered at $I$ is tangent to $\Gamma_{1}$ internally at $F$, and also tangent to $AB$ at $G$ and $CD$ at $H$. A line $l$ through $O$ intersects $AB$ and $CD$ at $P$ and $Q$ respectively such that $EP = EQ$. The line $EF$ intersects $l$ at $M$. Prove that the line through $M$ parallel to $AB$ is tangent to $\Gamma_{1}$

1935 Moscow Mathematical Olympiad, 009

The height of a truncated cone is equal to the radius of its base. The perimeter of a regular hexagon circumscribing its top is equal to the perimeter of an equilateral triangle inscribed in its base. Find the angle $\phi$ between the cone’s generating line and its base.

2012 Sharygin Geometry Olympiad, 3

A paper square was bent by a line in such way that one vertex came to a side not containing this vertex. Three circles are inscribed into three obtained triangles (see Figure). Prove that one of their radii is equal to the sum of the two remaining ones. (L.Steingarts)

1969 Czech and Slovak Olympiad III A, 5

Tags: geometry , conic , locus
Two perpendicular lines $p,q$ and a point $A\notin p\cup q$ are given in plane. Find locus of all points $X$ such that \[XA=\sqrt{|Xp|\cdot|Xq|\,},\] where $|Xp|$ denotes the distance of $X$ from $p.$

2016 China Northern MO, 6

Tags: geometry
Four points $B,E,A,F$ lie on line $AB$ in order, four points $C,G,D,H$ lie on line $CD$ in order, satisfying: $$\frac{AE}{EB}=\frac{AF}{FB}=\frac{DG}{GC}=\frac{DH}{HC}=\frac{AD}{BC}.$$ Prove that $FH\perp EG$.

2018 Sharygin Geometry Olympiad, 7

Let $B_1,C_1$ be the midpoints of sides $AC,AB$ of a triangle $ABC$ respectively. The tangents to the circumcircle at $B$ and $C$ meet the rays $CC_1,BB_1$ at points $K$ and $L$ respectively. Prove that $\angle BAK = \angle CAL$.

2004 AMC 12/AHSME, 20

Each face of a cube is painted either red or blue, each with probability $ 1/2$. The color of each face is determined independently. What is the probability that the painted cube can be placed on a horizontal surface so that the four vertical faces are all the same color? $ \textbf{(A)}\ \frac14 \qquad \textbf{(B)}\ \frac{5}{16} \qquad \textbf{(C)}\ \frac38 \qquad \textbf{(D)}\ \frac{7}{16} \qquad \textbf{(E)}\ \frac12$

2007 Kazakhstan National Olympiad, 4

Several identical square sheets of paper are laid out on a rectangular table so that their sides are parallel to the edges of the table (sheets may overlap). Prove that you can stick a few pins in such a way that each sheet will be attached to the table exactly by one pin.

2008 Indonesia Juniors, day 1

p1. Circle $M$ is the incircle of ABC, while circle $N$ is the incircle of $ACD$. Circles $M$ and $N$ are tangent at point $E$. If side length $AD = x$ cm, $AB = y$ cm, $BC = z$ cm, find the length of side $DC$ (in terms of $x, y$, and $z$). [img]https://cdn.artofproblemsolving.com/attachments/d/5/66ddc8a27e20e5a3b27ab24ff1eba3abee49a6.png[/img] p2. The address of the house on Jalan Bahagia will be numbered with the following rules: $\bullet$ One side of the road is numbered with consecutive even numbers starting from number $2$. $\bullet$ The opposite side is numbered with an odd number starting from number $3$. $\bullet$ In a row of even numbered houses, there is some land vacant house that has not been built. $\bullet$ The first house numbered $2$ has a neighbor next door. When the RT management ordered the numbers of the house, it is known that the cost of making each digit is $12.000$ Rp. For that, the total cost to be incurred is $1.020.000$ Rp. It is also known that the cost of all even-sided house numbers is $132.000$ Rp. cheaper than the odd side. When the land is empty later a house has been built, the number of houses on the even and odd sides is the same. Determine the number of houses that are now on Jalan Bahagia . p3. Given the following problem: Each element in the set $A = \{10, 11, 12,...,2008\}$ multiplied by each element in the set $B = \{21, 22, 23,...,99\}$. The results are then added together to give value of $X$. Determine the value of $X$. Someone answers the question by multiplying $2016991$ with $4740$. How can you explain that how does that person make sense? p4. Let $P$ be the set of all positive integers between $0$ and $2008$ which can be expressed as the sum of two or more consecutive positive integers . (For example: $11 = 5 + 6$, $90 = 29 + 30 + 31$, $100 = 18 + 19 +20 + 21 + 22$. So $11, 90, 100$ are some members of $P$.) Find the sum of of all members of $P$. p5. A four-digit number will be formed from the numbers at $0, 1, 2, 3, 4, 5$ provided that the numbers in the number are not repeated, and the number formed is a multiple of $3$. What is the probability that the number formed has a value less than $3000$?

1998 Hong kong National Olympiad, 1

In a concyclic quadrilateral $PQRS$,$\angle PSR=\frac{\pi}{2}$ , $H,K$ are perpendicular foot from $Q$ to sides $PR,RS$ , prove that $HK$ bisect segment$SQ$.