This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

1968 AMC 12/AHSME, 35

In this diagram the center of the circle is $O$, the radius is $a$ inches, chord $EF$ is parallel to chord $CD, O, G, H, J$ are collinear, and $G$ is the midpoint of $CD$. Let $K$ (sq. in.) represent the area of trapezoid $CDFE$ and let $R$ (sq. in.) represent the area of rectangle $ELMF$. Then, as $CD$ and $EF$ are translated upward so that $OG$ increases toward the value $a$, while $JH$ always equals $HG$, the ratio $K:R$ become arbitrarily close to: [asy] size((270)); draw((0,0)--(10,0)..(5,5)..(0,0)); draw((5,0)--(5,5)); draw((9,3)--(1,3)--(1,1)--(9,1)--cycle); draw((9.9,1)--(.1,1)); label("O", (5,0), S); label("a", (7.5,0), S); label("G", (5,1), SE); label("J", (5,5), N); label("H", (5,3), NE); label("E", (1,3), NW); label("L", (1,1), S); label("C", (.1,1), W); label("F", (9,3), NE); label("M", (9,1), S); label("D", (9.9,1), E); [/asy] $\textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ \sqrt{2} \qquad\textbf{(D)}\ \frac{1}{\sqrt{2}}+\frac{1}{2} \qquad\textbf{(E)}\ \frac{1}{\sqrt{2}}+1$

2006 Estonia Math Open Senior Contests, 8

Tags: geometry
Four points $ A, B, C, D$ are chosen on a circle in such a way that arcs $ AB, BC,$ and $ CD$ are of the same length and the $ arc DA$ is longer than these three. Line $ AD$ and the line tangent to the circle at $ B$ intersect at $ E$. Let $ F$ be the other endpoint of the diameter starting at $ C$ of the circle. Prove that triangle $ DEF$ is equilateral.

2019 Singapore Junior Math Olympiad, 1

In the triangle $ABC, AC=BC, \angle C=90^o, D$ is the midpoint of $BC, E$ is the point on $AB$ such that $AD$ is perpendicular to $CE$. Prove that $AE=2EB$.

2014 All-Russian Olympiad, 4

Given a triangle $ABC$ with $AB>BC$, let $ \Omega $ be the circumcircle. Let $M$, $N$ lie on the sides $AB$, $BC$ respectively, such that $AM=CN$. Let $K$ be the intersection of $MN$ and $AC$. Let $P$ be the incentre of the triangle $AMK$ and $Q$ be the $K$-excentre of the triangle $CNK$. If $R$ is midpoint of the arc $ABC$ of $ \Omega $ then prove that $RP=RQ$. [i]M. Kungodjin[/i]

2018 Belarusian National Olympiad, 10.1

The extension of the median $AM$ of the triangle $ABC$ intersects its circumcircle at $D$. The circumcircle of triangle $CMD$ intersects the line $AC$ at $C$ and $E$.The circumcircle of triangle $AME$ intersects the line $AB$ at $A$ and $F$. Prove that $CF$ is the altitude of triangle $ABC$.

1973 IMO Longlists, 1

Find the maximal positive number $r$ with the following property: If all altitudes of a tetrahedron are $\geq 1$, then a sphere of radius $r$ fits into the tetrahedron.

2004 Romania National Olympiad, 1

On the sides $AB,AD$ of the rhombus $ABCD$ are the points $E,F$ such that $AE=DF$. The lines $BC,DE$ intersect at $P$ and $CD,BF$ intersect at $Q$. Prove that: (a) $\frac{PE}{PD} + \frac{QF}{QB} = 1$; (b) $P,A,Q$ are collinear. [i]Virginia Tica, Vasile Tica[/i]

2006 Iran MO (3rd Round), 1

Prove that in triangle $ABC$, radical center of its excircles lies on line $GI$, which $G$ is Centroid of triangle $ABC$, and $I$ is the incenter.

2011 China Team Selection Test, 2

Let $S$ be a set of $n$ points in the plane such that no four points are collinear. Let $\{d_1,d_2,\cdots ,d_k\}$ be the set of distances between pairs of distinct points in $S$, and let $m_i$ be the multiplicity of $d_i$, i.e. the number of unordered pairs $\{P,Q\}\subseteq S$ with $|PQ|=d_i$. Prove that $\sum_{i=1}^k m_i^2\leq n^3-n^2$.

1975 Poland - Second Round, 5

Prove that if a sphere can be inscribed in a convex polyhedron and each face of this polyhedron can be painted in one of two colors such that any two faces sharing a common edge are of different colors, then the sum of the areas of the faces of one color is equal to the sum of the areas of the faces of the other color.

2007 Polish MO Finals, 5

5. In tetrahedron $ABCD$ following equalities hold: $\angle BAC+\angle BDC=\angle ABD+\angle ACD$ $\angle BAD+\angle BCD=\angle ABC+\angle ADC$ Prove that center of sphere circumscribed about ABCD lies on a line through midpoints of $AB$ and $CD$.

2005 JBMO Shortlist, 2

Let $ABCD$ be an isosceles trapezoid with $AB=AD=BC, AB//CD, AB>CD$. Let $E= AC \cap BD$ and $N$ symmetric to $B$ wrt $AC$. Prove that the quadrilateral $ANDE$ is cyclic.

2014 Oral Moscow Geometry Olympiad, 2

Is it possible to cut a regular triangular prism into two equal pyramids?

1995 IMO, 3

Determine all integers $ n > 3$ for which there exist $ n$ points $ A_{1},\cdots ,A_{n}$ in the plane, no three collinear, and real numbers $ r_{1},\cdots ,r_{n}$ such that for $ 1\leq i < j < k\leq n$, the area of $ \triangle A_{i}A_{j}A_{k}$ is $ r_{i} \plus{} r_{j} \plus{} r_{k}$.

2016 Sharygin Geometry Olympiad, 1

An altitude $AH$ of triangle $ABC$ bisects a median $BM$. Prove that the medians of triangle $ABM$ are sidelengths of a right-angled triangle. by Yu.Blinkov

1991 IMO, 2

Let $ \,ABC\,$ be a triangle and $ \,P\,$ an interior point of $ \,ABC\,$. Show that at least one of the angles $ \,\angle PAB,\;\angle PBC,\;\angle PCA\,$ is less than or equal to $ 30^{\circ }$.

2007 Estonia Team Selection Test, 2

Let $D$ be the foot of the altitude of triangle $ABC$ drawn from vertex $A$. Let $E$ and $F$ be points symmetric to $D$ w.r.t. lines $AB$ and $AC$, respectively. Let $R_1$ and $R_2$ be the circumradii of triangles $BDE$ and $CDF$, respectively, and let $r_1$ and $r_2$ be the inradii of the same triangles. Prove that $|S_{ABD} - S_{ACD}| > |R_1r_1 - R_2r_2|$

2007 Princeton University Math Competition, 4

Tags: geometry
$ABCDE$ is a regular pentagon (with vertices in that order) inscribed in a circle of radius $1$. Find $AB \cdot AC$.

2012 Tournament of Towns, 4

Alex marked one point on each of the six interior faces of a hollow unit cube. Then he connected by strings any two marked points on adjacent faces. Prove that the total length of these strings is at least $6\sqrt2$.

2008 JBMO Shortlist, 9

Tags: geometry
Let $O$ be a point inside the parallelogram $ABCD$ such that $\angle AOB + \angle COD = \angle BOC + \angle AOD$. Prove that there exists a circle $k$ tangent to the circumscribed circles of the triangles $\vartriangle AOB, \vartriangle BOC, \vartriangle COD$ and $\vartriangle DOA$.

2021 Kyiv Mathematical Festival, 3

Tags: geometry
Let $AD$ be the altitude, $AE$ be the median, and $O$ be the circumcenter of a triangle $ABC.$ Points $X$ and $Y$ are selected inside the triangle such that $\angle BAX=\angle CAY,$ $OX\perp AX,$ and $OY\perp AY.$ Prove that points $D,E,X,Y$ are concyclic. (M. Kurskiy)

2024 Kyiv City MO Round 2, Problem 3

Let $AH_A, BH_B, CH_C$ be the altitudes of the triangle $ABC$. Points $A_1$ and $C_1$ are the projections of the point $H_B$ onto the sides $AB$ and $BC$, respectively. $B_1$ is the projection of $B$ onto $H_AH_C$. Prove that the diameter of the circumscribed circle of $\triangle A_1B_1C_1$ is equal to $BH_B$. [i]Proposed by Anton Trygub[/i]

2023 Abelkonkurransen Finale, 1a

Tags: geometry
In the triangle $ABC$, $X$ lies on the side $BC$, $Y$ on the side $CA$, and $Z$ on the side $AB$ with $YX \| AB, ZY \| BC$, and $XZ \| CA$. Show that $X,Y$, and $Z$ are the midpoints of the respective sides of $ABC$.

1966 Poland - Second Round, 3

$6$ points are selected on the plane, none of which $3$ lie on one straight line, and all pairwise segments connecting these points are plotted. Some of the sections are plotted in red and others in blue. Prove that any three of the given points are the vertices of a triangle with sides of the same color.

2017 Irish Math Olympiad, 3

Four circles are drawn with the sides of quadrilateral $ABCD$ as diameters. The two circles passing through $A$ meet again at $A'$, two circles through $B$ at $B'$ , two circles at $C$ at $C'$ and the two circles at $D$ at $D'$. Suppose the points $A',B',C'$ and $D'$ are distinct. Prove quadrilateral $A'B'C'D'$ is similar to $ABCD$.