Found problems: 25757
1989 Greece National Olympiad, 2
Let $M$ be a point on side $BC$ of isosceles $ABC$ ($AB=AC$) and let $N$ be a points on the extension of $BC$ such that $(AM)^2+(AN)^2=2(AB)^2$. Find the locus of point $N$ when point $M$ moves on side $BC$.
2020 MOAA, Sets 6-9
[u]Set 6[/u]
[b]B16.[/b] Let $\ell_r$ denote the line $x + ry + r^2 = 420$. Jeffrey draws the lines $\ell_a$ and $\ell_b$ and calculates their single intersection point.
[b]B17.[/b] Let set $L$ consist of lines of the form $3x + 2ay = 60a + 48$ across all real constants a. For every line $\ell$ in $L$, the point on $\ell$ closest to the origin is in set $T$ . The area enclosed by the locus of all the points in $T$ can be expressed in the form nπ for some positive integer $n$. Compute $n$.
[b]B18.[/b] What is remainder when the $2020$-digit number $202020 ... 20$ is divided by $275$?
[u]Set 7[/u]
[b]B19.[/b] Consider right triangle $\vartriangle ABC$ where $\angle ABC = 90^o$, $\angle ACB = 30^o$, and $AC = 10$. Suppose a beam of light is shot out from point $A$. It bounces off side $BC$ and then bounces off side $AC$, and then hits point $B$ and stops moving. If the beam of light travelled a distance of $d$, then compute $d^2$.
[b]B20.[/b] Let $S$ be the set of all three digit numbers whose digits sum to $12$. What is the sum of all the elements in $S$?
[b]B21.[/b] Consider all ordered pairs $(m, n)$ where $m$ is a positive integer and $n$ is an integer that satisfy $$m! = 3n^2 + 6n + 15,$$ where $m! = m \times (m - 1) \times ... \times 1$. Determine the product of all possible values of $n$.
[u]Set 8[/u]
[b]B22.[/b] Compute the number of ordered pairs of integers $(m, n)$ satisfying $1000 > m > n > 0$ and $6 \cdot lcm(m - n, m + n) = 5 \cdot lcm(m, n)$.
[b]B23.[/b] Andrew is flipping a coin ten times. After every flip, he records the result (heads or tails). He notices that after every flip, the number of heads he had flipped was always at least the number of tails he had flipped. In how many ways could Andrew have flipped the coin?
[b]B24.[/b] Consider a triangle $ABC$ with $AB = 7$, $BC = 8$, and $CA = 9$. Let $D$ lie on $\overline{AB}$ and $E$ lie on $\overline{AC}$ such that $BCED$ is a cyclic quadrilateral and $D, O, E$ are collinear, where $O$ is the circumcenter of $ABC$. The area of $\vartriangle ADE$ can be expressed as $\frac{m\sqrt{n}}{p}$, where $m$ and $p$ are relatively prime positive integers, and $n$ is a positive integer not divisible by the square of any prime. What is $m + n + p$?
[u]Set 9[/u]
[i]This set consists of three estimation problems, with scoring schemes described.[/i]
[b]B25.[/b] Submit one of the following ten numbers: $$3 \,\,\,\, 6\,\,\,\, 9\,\,\,\, 12\,\,\,\, 15\,\,\,\, 18\,\,\,\, 21\,\,\,\, 24\,\,\,\, 27\,\,\,\, 30.$$
The number of points you will receive for this question is equal to the number you selected divided by the total number of teams that selected that number, then rounded up to the nearest integer. For example, if you and four other teams select the number $27$, you would receive $\left\lceil \frac{27}{5}\right\rceil = 6$ points.
[b]B26.[/b] Submit any integer from $1$ to $1,000,000$, inclusive. The standard deviation $\sigma$ of all responses $x_i$ to this question is computed by first taking the arithmetic mean $\mu$ of all responses, then taking the square root of average of $(x_i -\mu)^2$ over all $i$. More, precisely, if there are $N$ responses, then $$\sigma =\sqrt{\frac{1}{N} \sum^N_{i=1} (x_i -\mu)^2}.$$ For this problem, your goal is to estimate the standard deviation of all responses.
An estimate of $e$ gives $\max \{ \left\lfloor 130 ( min \{ \frac{\sigma }{e},\frac{e}{\sigma }\}^{3}\right\rfloor -100,0 \}$ points.
[b]B27.[/b] For a positive integer $n$, let $f(n)$ denote the number of distinct nonzero exponents in the prime factorization of $n$. For example, $f(36) = f(2^2 \times 3^2) = 1$ and $f(72) = f(2^3 \times 3^2) = 2$. Estimate $N = f(2) + f(3) +.. + f(10000)$.
An estimate of $e$ gives $\max \{30 - \lfloor 7 log_{10}(|N - e|)\rfloor , 0\}$ points.
PS. You had better use hide for answers. First sets have been posted [url=https://artofproblemsolving.com/community/c4h2777391p24371239]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2010 Today's Calculation Of Integral, 668
Consider two curves $y=\sin x,\ y=\sin 2x$ in $0\leq x\leq 2\pi$.
(1) Let $(\alpha ,\ \beta)\ (0<\alpha <\pi)$ be the intersection point of the curves. If $\sin x-\sin 2x$ has a local minimum at $x=x_1$ and a local maximum at $x=x_2$, then find the values of $\cos x_1,\ \cos x_1\cos x_2$.
(2) Find the area enclosed by the curves, then find the volume of the part generated by a rotation of the part of $\alpha \leq x\leq \pi$ for the figure about the line $y=-1$.
[i]2011 Kyorin University entrance exam/Medicine [/i]
2022 South Africa National Olympiad, 4
Let $ABC$ be a triangle with $AB < AC$. A point $P$ on the circumcircle of $ABC$ (on the same side of $BC$ as $A$) is chosen in such a way that $BP = CP$. Let $BP$ and the angle bisector of $\angle BAC$ intersect at $Q$, and let the line through $Q$ and parallel to $BC$ intersect $AC$ at $R$. Prove that $BR = CR$.
2000 Moldova National Olympiad, Problem 8
In an isosceles triangle $ABC$ with $BC=AC$ and $\angle B<60^\circ$, $I$ is the incenter and $O$ the circumcenter. The circle with center $E$ that passes through $A,O$ and $I$ intersects the circumcircle of $\triangle ABC$ again at point $D$. Prove that the lines $DE$ and $CO$ intersect on the circumcircle of $ABC$.
2009 Unirea, 4
Evaluate the limit:
\[ \lim_{n \to \infty}{n \cdot \sin{1} \cdot \sin{2} \cdot \dots \cdot \sin{n}}.\]
Proposed to "Unirea" Intercounty contest, grade 11, Romania
2005 QEDMO 1st, 5 (G1)
Let $ABC$ be a triangle, and let $C^{\prime}$ and $A^{\prime}$ be the feet of its altitudes issuing from the vertices $C$ and $A$, respectively. Denote by $P$ the midpoint of the segment $C^{\prime}A^{\prime}$. The circumcircles of triangles $AC^{\prime}P$ and $CA^{\prime}P$ have a common point apart from $P$; denote this common point by $Q$. Prove that:
[b](a)[/b] The point $Q$ lies on the circumcircle of the triangle $ABC$.
[b](b)[/b] The line $PQ$ passes through the point $B$.
[b](c)[/b] We have $\frac{AQ}{CQ}=\frac{AB}{CB}$.
Darij
1978 All Soviet Union Mathematical Olympiad, 261
Given a circle with radius $R$ and inscribed $n$-gon with area $S$. We mark one point on every side of the given polygon. Prove that the perimeter of the polygon with the vertices in the marked points is not less than $2S/R$.
2016 Taiwan TST Round 2, 6
Let $AXYZB$ be a convex pentagon inscribed in a semicircle with diameter $AB$, and let $K$ be the foot of the altitude from $Y$ to $AB$. Let $O$ denote the midpoint of $AB$ and $L$ be the intersection of $XZ$ with $YO$. Select a point $M$ on line $KL$ with $MA=MB$ , and finally, let $I$ be the reflection of $O$ across $XZ$.
Prove that if quadrilateral $XKOZ$ is cyclic then so is quadrilateral $YOMI$.
[i]Proposed by Evan Chen[/i]
1968 All Soviet Union Mathematical Olympiad, 099
The difference between the maximal and the minimal diagonals of the regular $n$-gon equals to its side ( $n > 5$ ). Find $n$.
2009 Sharygin Geometry Olympiad, 24
A sphere is inscribed into a quadrangular pyramid. The point of contact of the sphere with the base of the pyramid is projected to the edges of the base. Prove that these projections are concyclic.
2012 Harvard-MIT Mathematics Tournament, 8
Hexagon $ABCDEF$ has a circumscribed circle and an inscribed circle. If $AB = 9$, $BC = 6$, $CD = 2$, and $EF = 4$. Find $\{DE, FA\}$.
2008 Harvard-MIT Mathematics Tournament, 2
Let $ ABC$ be an equilateral triangle. Let $ \Omega$ be its incircle (circle inscribed in the triangle) and let $ \omega$ be a circle tangent externally to $ \Omega$ as well as to sides $ AB$ and $ AC$. Determine the ratio of the radius of $ \Omega$ to the radius of $ \omega$.
2002 AIME Problems, 15
Circles $\mathcal{C}_{1}$ and $\mathcal{C}_{2}$ intersect at two points, one of which is $(9,6),$ and the product of the radii is $68.$ The x-axis and the line $y=mx$, where $m>0,$ are tangent to both circles. It is given that $m$ can be written in the form $a\sqrt{b}/c,$ where $a,$ $b,$ and $c$ are positive integers, $b$ is not divisible by the square of any prime, and $a$ and $c$ are relatively prime. Find $a+b+c.$
1983 Bundeswettbewerb Mathematik, 1
The surface of a soccer ball is made up of black pentagons and white hexagons together. On the sides of each pentagon are nothing but hexagons, while on the sides of each border of hexagons alternately pentagons and hexagons. Determine from this information about the soccer ball , the number of its pentagons and its hexagons.
2009 IMC, 5
Let $n$ be a positive integer. An $n-\emph{simplex}$ in $\mathbb{R}^n$ is given by $n+1$ points $P_0, P_1,\cdots , P_n$, called its vertices, which do not all belong to the same hyperplane. For every $n$-simplex $\mathcal{S}$ we denote by $v(\mathcal{S})$ the volume of $\mathcal{S}$, and we write $C(\mathcal{S})$ for the center of the unique sphere containing all the vertices of $\mathcal{S}$.
Suppose that $P$ is a point inside an $n$-simplex $\mathcal{S}$. Let $\mathcal{S}_i$ be the $n$-simplex obtained from $\mathcal{S}$ by replacing its $i^{\text{th}}$ vertex by $P$. Prove that :
\[ \sum_{j=0}^{n}v(\mathcal{S}_j)C(\mathcal{S}_j)=v(\mathcal{S})C(\mathcal{S}) \]
2019 Serbia National MO, 3
Let $k$ be the circle inscribed in convex quadrilateral $ABCD$. Lines $AD$ and $BC$ meet at $P$ ,and circumcircles of $\triangle PAB$ and $\triangle PCD$ meet in $X$ . Prove that tangents from $X$ to $k$ form equal angles with lines $AX$ and $CX$ .
2025 Bangladesh Mathematical Olympiad, P3
Let $ABC$ be a given triangle with circumcenter $O$ and orthocenter $H$. Let $D, E$ and $F$ be the feet of the perpendiculars from $A, B$ and $C$ to the opposite sides, respectively. Let $A'$ be the reflection of $A$ with respect to $EF$. Prove that $HOA'D$ is a cyclic quadrilateral.
[i]Proposed by Imad Uddin Ahmad Hasin[/i]
2016 China Western Mathematical Olympiad, 7
$ABCD$ is a cyclic quadrilateral, and $\angle BAC = \angle DAC$. $\astrosun I_1$ and $\astrosun I_2$ are the incircles of $\triangle ABD$ and $\triangle ADC$ respectively. Prove that one of the common external tangents of $\astrosun I_1$ and $\astrosun I_2$ is parallel to $BD$
1981 IMO, 1
Consider a variable point $P$ inside a given triangle $ABC$. Let $D$, $E$, $F$ be the feet of the perpendiculars from the point $P$ to the lines $BC$, $CA$, $AB$, respectively. Find all points $P$ which minimize the sum \[ {BC\over PD}+{CA\over PE}+{AB\over PF}. \]
Kvant 2024, M2781
Let $A_1$ be the midpoint of the smaller arc $BC$ of the circumcircle of the acute-angled triangle $ABC.{}$ The point $A_1$ is reflected relative to the side $BC,$ and then its image is reflected relative to the bisector of $\angle BAC{}$ resulting in the point $A_2 $. Similarly, the points $B_2$ and $C_2$ are constructed. Prove that the circumcenter and incenter of the triangle $ABC{}$ lie on the Euler line of the triangle $A_2B_2C_2.$
[i]Proposed by A. Tereshin[/i]
2015 Kyiv Math Festival, P4
Let $O$ be the intersection point of altitudes $AD$ and $BE$ of equilateral triangle $ABC.$ Points $K$ and $L$ are chosen
inside segments $AO$ and $BO$ respectively such that line $KL$ bisects the perimeter of triangle $ABC.$ Let $F$ be the
intersection point of lines $EK$ and $DL.$ Prove that $O$ is the circumcenter of triangle $DEF.$
2023 JBMO TST - Turkey, 2
Let $ABC$ is acute angled triangle and $K,L$ is points on $AC,BC$ respectively such that $\angle{AKB}=\angle{ALB}$. $P$ is intersection of $AL$ and $BK$ and $Q$ is the midpoint of segment $KL$. Let $T,S$ are the intersection $AL,BK$ with $(ABC)$ respectively. Prove that $TK,SL,PQ$ are concurrent.
1993 Irish Math Olympiad, 5
$ (a)$ The rectangle $ PQRS$ with $ PQ\equal{}l$ and $ QR\equal{}m$ $ (l,m \in \mathbb{N})$ is divided into $ lm$ unit squares. Prove that the diagonal $ PR$ intersects exactly $ l\plus{}m\minus{}d$ of these squares, where $ d\equal{}(l,m)$.
$ (b)$ A box with edge lengths $ l,m,n \in \mathbb{N}$ is divided into $ lmn$ unit cubes. How many of the cubes does a main diagonal of the box intersect?
1980 All Soviet Union Mathematical Olympiad, 298
Given equilateral triangle $ABC$. Some line, parallel to $[AC]$ crosses $[AB]$ and $[BC]$ in $M$ and $P$ points respectively. Let $D$ be the centre of $PMB$ triangle, $E$ be the midpoint of the $[AP]$ segment. Find the angles of triangle $DEC$ .