Found problems: 25757
2022 IOQM India, 3
Consider the set $\mathcal{T}$ of all triangles whose sides are distinct prime numbers which are also in arithmetic progression. Let $\triangle \in \mathcal{T}$ be the triangle with least perimeter. If $a^{\circ}$ is the largest angle of $\triangle$ and $L$ is its perimeter, determine the value of $\frac{a}{L}$.
2014 Spain Mathematical Olympiad, 3
Let $B$ and $C$ be two fixed points on a circle centered at $O$ that are not diametrically opposed. Let $A$ be a variable point on the circle distinct from $B$ and $C$ and not belonging to the perpendicular bisector of $BC$. Let $H$ be the orthocenter of $\triangle ABC$, and $M$ and $N$ be the midpoints of the segments $BC$ and $AH$, respectively. The line $AM$ intersects the circle again at $D$, and finally, $NM$ and $OD$ intersect at $P$. Determine the locus of points $P$ as $A$ moves around the circle.
1967 All Soviet Union Mathematical Olympiad, 084
a) The maximal height $|AH|$ of the acute-angled triangle $ABC$ equals the median $|BM|$. Prove that the angle $ABC$ isn't greater than $60$ degrees.
b) The height $|AH|$ of the acute-angled triangle $ABC$ equals the median $|BM|$ and bisectrix $|CD|$. Prove that the angle $ABC$ is equilateral.
1949-56 Chisinau City MO, 22
Show that in a right-angled triangle the bisector of the right angle divides into equal parts the angle between the altitude and the median, drawn from the same vertex.
2021 Sharygin Geometry Olympiad, 9.7
Three sidelines of on acute-angled triangle are drawn on the plane. Fyodor wants to draw the altitudes of this triangle using a ruler and a compass. Ivan obstructs him using an eraser. For each move Fyodor may draw one line through two markeed points or one circle centered at a marked point and passing through another marked point. After this Fyodor may mark an arbitrary number of points (the common points of drawn lines, arbitrary points on the drawn lines or arbitrary points on the plane). For each move Ivan erases at most three of marked point. (Fyodor may not use the erased points in his constructions but he may mark them for the second time). They move by turns, Fydors begins. Initially no points are marked. Can Fyodor draw the altitudes?
2017 Junior Balkan Team Selection Tests - Romania, 1
Let $P$ be a point in the interior of the acute-angled triangle $ABC$. Prove that if the reflections of $P$ with respect to the sides of the triangle lie on the circumcircle of the triangle, then $P$ is the orthocenter of $ABC$.
2017 Iran MO (3rd round), 2
Let $ABCD$ be a trapezoid ($AB<CD,AB\parallel CD$) and $P\equiv AD\cap BC$. Suppose that $Q$ be a point inside $ABCD$ such that $\angle QAB=\angle QDC=90-\angle BQC$. Prove that $\angle PQA=2\angle QCD$.
2004 Germany Team Selection Test, 3
We attach to the vertices of a regular hexagon the numbers $1$, $0$, $0$, $0$, $0$, $0$. Now, we are allowed to transform the numbers by the following rules:
(a) We can add an arbitrary integer to the numbers at two opposite vertices.
(b) We can add an arbitrary integer to the numbers at three vertices forming an equilateral triangle.
(c) We can subtract an integer $t$ from one of the six numbers and simultaneously add $t$ to the two neighbouring numbers.
Can we, just by acting several times according to these rules, get a cyclic permutation of the initial numbers? (I. e., we started with $1$, $0$, $0$, $0$, $0$, $0$; can we now get $0$, $1$, $0$, $0$, $0$, $0$, or $0$, $0$, $1$, $0$, $0$, $0$, or $0$, $0$, $0$, $1$, $0$, $0$, or $0$, $0$, $0$, $0$, $1$, $0$, or $0$, $0$, $0$, $0$, $0$, $1$ ?)
2010 Today's Calculation Of Integral, 636
Let $a>1$ be a constant. In the $xy$-plane, let $A(a,\ 0),\ B(a,\ \ln a)$ and $C$ be the intersection point of the curve $y=\ln x$ and the $x$-axis. Denote by $S_1$ the area of the part bounded by the $x$-axis, the segment $BA$ and the curve $y=\ln x$
(1) For $1\leq b\leq a$, let $D(b,\ \ln b)$. Find the value of $b$ such that the area of quadrilateral $ABDC$ is the closest to $S_1$ and find the area $S_2$.
(2) Find $\lim_{a\rightarrow \infty} \frac{S_2}{S_1}$.
[i]1992 Tokyo University entrance exam/Science[/i]
Ukrainian TYM Qualifying - geometry, I.9
Prove that for any interior point of a triangle the sum of squares of distances from it to the sides of a triangle is not less than $\frac{4S^2}{9R^2}$.
[hide=about S,R]they are not defined, but I suppose they mean it's area and circumradii respectively[/hide]
1997 Czech And Slovak Olympiad IIIA, 3
A tetrahedron $ABCD$ is divided into five polyhedra so that each face of the tetrahedron is a face of (exactly) one polyhedron, and that the intersection of any two of the polyhedra is either a common vertex, a common edge, or a common face. What is the smallest possible sum of the numbers of faces of the five polyhedra?
1999 French Mathematical Olympiad, Problem 1
What is the maximum possible volume of a cylinder inscribed in a cone and having the same axis of symmetry as the cone? What is the maximum possible volume of a ball inscribed in the cone with center on the axis of symmetry of the cone? Compare these three volumes.
2015 Iran Team Selection Test, 4
Ali puts $5$ points on the plane such that no three of them are collinear. Ramtin adds a sixth point that is not collinear with any two of the former points.Ali wants to eventually construct two triangles from the six points such that one can be placed inside another. Can Ali put the 5 points in such a manner so that he would
always be able to construct the desired triangles? (We say that triangle $T_1$ can be
placed inside triangle $T_2$ if $T_1$ is congruent to a triangle that is located completely
inside $T_2$.)
Ukrainian TYM Qualifying - geometry, 2016.1
The points $K$ and $N$ lie on the hypotenuse $AB$ of a right triangle $ABC$. Prove that orthocenters the triangles $BCK$ and $ACN$ coincide if and only if $\frac{BN}{AK}=\tan^2 A.$
1987 ITAMO, 2
A tetrahedron has the property that the three segments connecting the pairs of midpoints of opposite edges are equal and mutually orthogonal. Prove that this tetrahedron is regular.
2011 Sharygin Geometry Olympiad, 4
Segments $AA'$, $BB'$, and $CC'$ are the bisectrices of triangle $ABC$. It is known that these lines are also the bisectrices of triangle $A'B'C'$. Is it true that triangle $ABC$ is regular?
MMPC Part II 1996 - 2019, 2005
[b]p1.[/b] Two perpendicular chords intersect in a circle. The lengths of the segments of one chord are $3$ and $4$. The lengths of the segments of the other chord are $6$ and $2$. Find the diameter of the circle.
[b]p2.[/b] Determine the greatest integer that will divide $13,511$, $13,903$ and $14,589$ and leave the same remainder.
[b]p3.[/b] Suppose $A, B$ and $C$ are the angles of the triangle. Show that $\cos^2 A + \cos^2 B + \cos^2 C + 2 \cos A \cos B \cos C = 1$
[b]p4.[/b] Given the linear fractional transformation $f_1(x) =\frac{2x - 1}{x + 1}$.
Define $f_{n+1}(x) = f_1(f_n(x))$ for $n = 1, 2, 3,...$ .
It can be shown that $f_{35} = f_5$.
(a) Find a function $g$ such that $f_1(g(x)) = g(f_1(x)) = x$.
(b) Find $f_{28}$.
[b]p5.[/b] Suppose $a$ is a complex number such that $a^{10} + a^5 + 1 = 0$. Determine the value of $a^{2005} + \frac{1}{a^{2005}}$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2013 Online Math Open Problems, 17
Let $ABXC$ be a parallelogram. Points $K,P,Q$ lie on $\overline{BC}$ in this order such that $BK = \frac{1}{3} KC$ and $BP = PQ = QC = \frac{1}{3} BC$. Rays $XP$ and $XQ$ meet $\overline{AB}$ and $\overline{AC}$ at $D$ and $E$, respectively. Suppose that $\overline{AK} \perp \overline{BC}$, $EK-DK=9$ and $BC=60$. Find $AB+AC$.
[i]Proposed by Evan Chen[/i]
2002 Romania National Olympiad, 2
Let $ABC$ be a right triangle where $\measuredangle A = 90^\circ$ and $M\in (AB)$ such that $\frac{AM}{MB}=3\sqrt{3}-4$. It is known that the symmetric point of $M$with respect to the line $GI$ lies on $AC$. Find the measure of $\measuredangle B$.
2023 Turkey Team Selection Test, 9
The points $ A,B,K,L,X$ lies of the circle $\Gamma$ in that order such that the arcs $\widehat{BK}$ and $\widehat{KL}$ are equal. The circle that passes through $A$ and tangent to $BK$ at $B$ intersects the line segment $KX$ at $P$ and $Q$. The circle that passes through $A$ and tangent to $BL$ at $B$ intersect the line segment $BX$ for the second time at $T$. Prove that $\angle{PTB} = \angle{XTQ}$
2011 Germany Team Selection Test, 1
Two circles $\omega , \Omega$ intersect in distinct points $A,B$ a line through $B$ intersects $\omega , \Omega$ in $C,D$ respectively such that $B$ lies between $C,D$ another line through $B$ intersects $\omega , \Omega$ in $E,F$ respectively such that $E$ lies between $B,F$ and $FE=CD$. Furthermore $CF$ intersects $\omega , \Omega$ in $P,Q$ respectively and $M,N$ are midpoints of the arcs $PB,QB$. Prove that $CNMF$ is a cyclic quadrilateral.
2016 ITAMO, 1
Let $ABC$ be a triangle, and let $D$ and $E$ be the orthogonal projections of $A$ onto the internal bisectors from $B$ and $C$. Prove that $DE$ is parallel to $BC$.
2014 Stanford Mathematics Tournament, 2
Let $ABC$ be a triangle with sides $AB = 19$, $BC = 21$ and $AC = 20$. Let $\omega$ be the incircle of $ABC$ with center $I$. Extend $BI$ so that it intersects $AC$ at $E$. If $\omega$ is tangent to $AC$ at the point $D$, then find the length of $DE$.
Kettering MO, 2008
[b]p1.[/b] The case of Mr. Brown, Mr. Potter, and Mr. Smith is investigated. One of them has committed a crime. Everyone of them made two statements.
Mr. Brown: I have not done it. Mr. Potter has not done it.
Mr. Potter: Mr. Brown has not done it. Mr. Smith has done it.
Mr. Smith: I have not done it. Mr. Brown has done it.
It is known that one of them told the truth both times, one lied both times, and one told the truth one time and lied one time. Who has committed the crime?
[b]p2.[/b] Is it possible to draw in a plane $1000001$ circles of the radius $1$ such that every circle touches exactly three other circles?
[b]p3.[/b] Consider a circle of radius $R$ centered at the origin. A particle is “launched” from the $x$-axis at a distance, $d$, from the origin with $0 < d < R$, and at an angle, $\alpha$, with the $x$-axis. The particle is reflected from the boundary of the circle so that the [b]angle of incidence[/b] equals the [b]angle of reflection[/b]. Determine the angle $\alpha$ so that the path of the particle contacts the circle’s interior at exactly eight points. Please note that $\alpha$ should be determined in terms of the qunatities $R$ and $d$.
[img]https://cdn.artofproblemsolving.com/attachments/e/3/b8ef9bb8d1b54c263bf2b68d3de60be5b41ad0.png[/img]
[b]p4.[/b] Is it possible to find four different real numbers such that the cube of every number equals the square of the sum of the three others?
[b]p5. [/b]The Fibonacci sequence $(1, 2, 3, 5, 8, 13, 21, . . .)$ is defined by the following formula:
$f_n = f_{n-2} + f_{n-1}$, where $f_1 = 1$, $f_2 = 2$. Prove that any positive integer can be represented as a sum of different members of the Fibonacci sequence.
[b]p6.[/b] $10,000$ points are arbitrary chosen inside a square of area $1$ m$^2$ . Does there exist a broken line connecting all these points, the length of which is less than $201$ m$^2?
PS. You should use hide for answers.
2012 Harvard-MIT Mathematics Tournament, 2
Let $ABC$ be a triangle with $\angle A = 90^o$, $AB = 1$, and $AC = 2$. Let $\ell$ be a line through $A$ perpendicular to $BC$, and let the perpendicular bisectors of $AB$ and $AC$ meet $\ell$ at $E$ and $F$, respectively. Find the length of segment $EF$.