This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

1953 Moscow Mathematical Olympiad, 235

Divide a segment in halves using a right triangle. (With a right triangle one can draw straight lines and erect perpendiculars but cannot draw perpendiculars.)

2023 South Africa National Olympiad, 6

Let $ABIH$,$BDEC$ and $ACFG$ be arbitrary rectangles constructed (externally) on the sides of triangle $ABC$.Choose point $S$ outside rectangle $ABIH$ (on the opposite side as triangle $ABC$) such that $\angle SHI=\angle FAC$ and $\angle HIS=\angle EBC$.Prove that the lines $FI,EH$ and $CS$ are concurrent(i.e., the three lines intersect in one point).

2017 Peru IMO TST, 11

Let $ABC$ be an acute and scalene of circumcircle $\Gamma$ and orthocenter $H$. Let $A_1,B_1,C_1$ be the second intersection points of the lines $AH, BH, CH$ with $\Gamma$, respectively. The lines that pass through $A_1,B_1,C_1$ and are parallel to $BC,CA, AB$ intersect again to $\Gamma$ at $A_2,B_2,C_2$, respectively. Let $M$ be the intersection point of $AC_2$ and $BC_1, N$ the intersection point of $BA_2$ and $CA_1$, and $P$ the intersection point of $CB_2$ and $AB_1$. Prove that $\angle MNB = \angle AMP$ .

2008 Sharygin Geometry Olympiad, 6

Tags: geometry
(A. Myakishev, 8--9) In the plane, given two concentric circles with the center $ A$. Let $ B$ be an arbitrary point on some of these circles, and $ C$ on the other one. For every triangle $ ABC$, consider two equal circles mutually tangent at the point $ K$, such that one of these circles is tangent to the line $ AB$ at point $ B$ and the other one is tangent to the line $ AC$ at point $ C$. Determine the locus of points $ K$.

Kvant 2025, M2831

Tags: geometry , parabola , conic
Let $DEF$ be triangle, inscribed in parabola. Tangents in points $D,E,F$ forms triangle $ABC$. Prove that $S_{DEF}=2S_{ABC}$. ($S_T$ is area of triangle $T$). [i]From F.S.Macaulay's book «Geometrical Conics», suggested by M. Panov[/i]

2020 IMO, 6

Prove that there exists a positive constant $c$ such that the following statement is true: Consider an integer $n > 1$, and a set $\mathcal S$ of $n$ points in the plane such that the distance between any two different points in $\mathcal S$ is at least 1. It follows that there is a line $\ell$ separating $\mathcal S$ such that the distance from any point of $\mathcal S$ to $\ell$ is at least $cn^{-1/3}$. (A line $\ell$ separates a set of points S if some segment joining two points in $\mathcal S$ crosses $\ell$.) [i]Note. Weaker results with $cn^{-1/3}$ replaced by $cn^{-\alpha}$ may be awarded points depending on the value of the constant $\alpha > 1/3$.[/i] [i]Proposed by Ting-Feng Lin and Hung-Hsun Hans Yu, Taiwan[/i]

2002 Singapore Senior Math Olympiad, 2

The vertices of a triangle inscribed in a circle are the points of tangency of a triangle circumscribed about the circle. Prove that the product of the perpendicular distances from any point on the circle to the sides of the inscribed triangle is the same as the product of the perpendicular distances from the same point to the sides of the circumscribed triangle.

Indonesia Regional MO OSP SMA - geometry, 2014.4

Tags: geometry , product , ratio
Let $\Gamma$ be the circumcircle of triangle $ABC$. One circle $\omega$is tangent to $\Gamma$ at $A$ and tangent to $BC$ at $N$. Suppose that the extension of $AN$ crosses $\Gamma$ again at $E$. Let $AD$ and $AF$ be respectively the line of altitude $ABC$ and diameter of $\Gamma$, show that $AN \times AE = AD \times AF = AB \times AC$

III Soros Olympiad 1996 - 97 (Russia), 10.7

An arbitrary point $M$ is taken inside a regular triangle $ABC$. Prove, that on sides $AB$, $BC$ and $CA$ one can choose points $C_1$, $A_1$ and $B_1$, respectively, so that $B_1C_1 = AM$, $C_1A_1 = BM$, $A_1B_1 = CM$. Find $BA$ if $AB_1= a$, $AC_1 = b$, $a>b$.

2019 MOAA, Sets 6-9

[u]Set 6[/u] [b]p16.[/b] Let $n! = n \times (n - 1) \times ... \times 2 \times 1$. Find the maximum positive integer value of $x$ such that the quotient $\frac{160!}{160^x}$ is an integer. [b]p17.[/b] Let $\vartriangle OAB$ be a triangle with $\angle OAB = 90^o$ . Draw points $C, D, E, F, G$ in its plane so that $$\vartriangle OAB \sim \vartriangle OBC \sim \vartriangle OCD \sim \vartriangle ODE \sim \vartriangle OEF \sim \vartriangle OFG,$$ and none of these triangles overlap. If points $O, A, G$ lie on the same line, then let $x$ be the sum of all possible values of $\frac{OG}{OA }$. Then, $x$ can be expressed in the form $m/n$ for relatively prime positive integers $m, n$. Compute $m + n$. [b]p18.[/b] Let $f(x)$ denote the least integer greater than or equal to $x^{\sqrt{x}}$. Compute $f(1)+f(2)+f(3)+f(4)$. [u]Set 7[/u] The Fibonacci sequence $\{F_n\}$ is defined as $F_0 = 0$, $F_1 = 1$ and $F_{n+2} = F_{n+1} + F_n$ for all integers $n \ge 0$. [b]p19.[/b] Find the least odd prime factor of $(F_3)^{20} + (F_4)^{20} + (F_5)^{20}$. [b]p20.[/b] Let $$S = \frac{1}{F_3F_5}+\frac{1}{F_4F_6}+\frac{1}{F_5F_7}+\frac{1}{F_6F_8}+...$$ Compute $420S$. [b]p21.[/b] Consider the number $$Q = 0.000101020305080130210340550890144... ,$$ the decimal created by concatenating every Fibonacci number and placing a 0 right after the decimal point and between each Fibonacci number. Find the greatest integer less than or equal to $\frac{1}{Q}$. [u]Set 8[/u] [b]p22.[/b] In five dimensional hyperspace, consider a hypercube $C_0$ of side length $2$. Around it, circumscribe a hypersphere $S_0$, so all $32$ vertices of $C_0$ are on the surface of $S_0$. Around $S_0$, circumscribe a hypercube $C_1$, so that $S_0$ is tangent to all hyperfaces of $C_1$. Continue in this same fashion for $S_1$, $C_2$, $S_2$, and so on. Find the side length of $C_4$. [b]p23.[/b] Suppose $\vartriangle ABC$ satisfies $AC = 10\sqrt2$, $BC = 15$, $\angle C = 45^o$. Let $D, E, F$ be the feet of the altitudes in $\vartriangle ABC$, and let $U, V , W$ be the points where the incircle of $\vartriangle DEF$ is tangent to the sides of $\vartriangle DEF$. Find the area of $\vartriangle UVW$. [b]p24.[/b] A polynomial $P(x)$ is called spicy if all of its coefficients are nonnegative integers less than $9$. How many spicy polynomials satisfy $P(3) = 2019$? [i]The next set will consist of three estimation problems.[/i] [u]Set 9[/u] Points will be awarded based on the formulae below. Answers are nonnegative integers that may exceed $1,000,000$. [b]p25.[/b] Suppose a circle of radius $20192019$ has area $A$. Let s be the side length of a square with area $A$. Compute the greatest integer less than or equal to $s$. If $n$ is the correct answer, an estimate of $e$ gives $\max \{ 0, \left\lfloor 1030 ( min \{ \frac{n}{e},\frac{e}{n}\}^{18}\right\rfloor -1000 \}$ points. [b]p26.[/b] Given a $50 \times 50$ grid of squares, initially all white, define an operation as picking a square and coloring it and the four squares horizontally or vertically adjacent to it blue, if they exist. If a square is already colored blue, it will remain blue if colored again. What is the minimum number of operations necessary to color the entire grid blue? If $n$ is the correct answer, an estimate of $e$ gives $\left\lfloor \frac{180}{5|n-e|+6}\right\rfloor$ points. [b]p27.[/b] The sphere packing problem asks what percent of space can be filled with equally sized spheres without overlap. In three dimensions, the answer is $\frac{\pi}{3\sqrt2} \approx 74.05\%$ of space (confirmed as recently as $2017!$), so we say that the packing density of spheres in three dimensions is about $0.74$. In fact, mathematicians have found optimal packing densities for certain other dimensions as well, one being eight-dimensional space. Let d be the packing density of eight-dimensional hyperspheres in eightdimensional hyperspace. Compute the greatest integer less than $10^8 \times d$. If $n$ is the correct answer, an estimate of e gives $\max \left\{ \lfloor 30-10^{-5}|n - e|\rfloor, 0 \right\}$ points. PS. You had better use hide for answers. First sets have be posted [url=https://artofproblemsolving.com/community/c4h2777330p24370124]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1999 Greece Junior Math Olympiad, 3

Let $ABC$ be an equilateral triangle . Let point $D$ lie on side $AB,E$ lie on side $AC, D_1$ and $E_1$ lie on side BC such that $AB=DB+BD_1$ and $AC=CE+CE_1$. Calculate the smallest angle between the lines $DE_1$ and $ED_1$.

1988 Czech And Slovak Olympiad IIIA, 3

Given a tetrahedron $ABCD$ with edges $|AD|=|BC|= a$, $|AC|=|BD|=b$, $AB=c$ and $|CD| = d$. Determine the smallest value of the sum $|AX|+|BX|+|CX|+|DX|$, where $X$ is any point in space.

2006 Regional Competition For Advanced Students, 3

In a non isosceles triangle $ ABC$ let $ w$ be the angle bisector of the exterior angle at $ C$. Let $ D$ be the point of intersection of $ w$ with the extension of $ AB$. Let $ k_A$ be the circumcircle of the triangle $ ADC$ and analogy $ k_B$ the circumcircle of the triangle $ BDC$. Let $ t_A$ be the tangent line to $ k_A$ in A and $ t_B$ the tangent line to $ k_B$ in B. Let $ P$ be the point of intersection of $ t_A$ and $ t_B$. Given are the points $ A$ and $ B$. Determine the set of points $ P\equal{}P(C )$ over all points $ C$, so that $ ABC$ is a non isosceles, acute-angled triangle.

2013 Kosovo National Mathematical Olympiad, 5

Tags: geometry
Let $ABCD$ be a convex quadrilateral with perpendicular diagonals. . Assume that $ABCD$ has been inscribed in the circle with center $O$. Prove that $AOC$ separates $ABCD$ into two quadrilaterals of equal area

2008 Moldova National Olympiad, 9.3

From the vertex $ A$ of the equilateral triangle $ ABC$ a line is drown that intercepts the segment $ [BC]$ in the point $ E$. The point $ M \in (AE$ is such that $ M$ external to $ ABC$, $ \angle AMB \equal{} 20 ^\circ$ and $ \angle AMC \equal{} 30 ^ \circ$. What is the measure of the angle $ \angle MAB$?

2022 Sharygin Geometry Olympiad, 9.7

Tags: geometry
Let $H$ be the orthocenter of an acute-angled triangle $ABC$. The circumcircle of triangle $AHC$ meets segments $AB$ and $BC$ at points $P$ and $Q$. Lines $PQ$ and $AC$ meet at point $R$. A point $K$ lies on the line $PH$ in such a way that $\angle KAC = 90^{\circ}$. Prove that $KR$ is perpendicular to one of the medians of triangle $ABC$.

1989 Romania Team Selection Test, 3

Let $ABCD$ be a parallelogram and $M,N$ be points in the plane such that $C \in (AM)$ and $D \in (BN)$. Lines $NA,NC$ meet lines $MB,MD$ at points $E,F,G,H$. Show that points $E,F,G,H$ lie on a circle if and only if $ABCD$ is a rhombus.

2001 Grosman Memorial Mathematical Olympiad, 5

Triangle $ABC$ in the plane $\Pi$ is called [i]good [/i] if it has the following property: For any point $D$ in space outside the plane $\Pi$, it is possible to construct a triangle with sides of lengths $CD,BD,AD$. Find all good triangles

2022 Yasinsky Geometry Olympiad, 1

Tags: geometry , angle , median
In the triangle $ABC$, the median $AM$ is extended to the intersection with the circumscribed circle at point $D$. It is known that $AB = 2AM$ and $AD = 4AM$. Find the angles of the triangle $ABC$. (Gryhoriy Filippovskyi)

VI Soros Olympiad 1999 - 2000 (Russia), grade7

[b]p1.[/b] Cities A, B, C, D and E are located next to each other along the highway at a distance of $5$ km from each other. The bus runs along the highway from city A to city E and back. The bus consumes $20$ liters of gasoline for every $100$ kilometers. In which city will a bus run out of gas if it initially had $150$ liters of gasoline in its tank? [b]p2.[/b] Find the minimum four-digit number whose product of all digits is $729$. Explain your answer. [b]p3.[/b] At the parade, soldiers are lined up in two lines of equal length, and in the first line the distance between adjacent soldiers is $ 20\%$ greater than in the second (there is the same distance between adjacent soldiers in the same line). How many soldiers are in the first rank if there are $85$ soldiers in the second rank? [b]p4.[/b] It is known about three numbers that the sum of any two of them is not less than twice the third number, and the sum of all three is equal to $300$. Find all triplets of such (not necessarily integer) numbers. [b]p5.[/b] The tourist fills two tanks of water using two hoses. $2.9$ liters of water flow out per minute from the first hose, $8.7$ liters from the second. At that moment, when the smaller tank was half full, the tourist swapped the hoses, after which both tanks filled at the same time. What is the capacity of the larger tank if the capacity of the smaller one is $12.5$ liters? [b]p6.[/b] Is it possible to mark 6 points on a plane and connect them with non-intersecting segments (with ends at these points) so that exactly four segments come out of each point? [b]p7.[/b] Petya wrote all the natural numbers from $1$ to $1000$ and circled those that are represented as the difference of the squares of two integers. Among the circled numbers, which numbers are more even or odd? [b]p8.[/b] On a sheet of checkered paper, draw a circle of maximum radius that intersects the grid lines only at the nodes. Explain your answer. [b]p9.[/b] Along the railway there are kilometer posts at a distance of $1$ km from each other. One of them was painted yellow and six were painted red. The sum of the distances from the yellow pillar to all the red ones is $14$ km. What is the maximum distance between the red pillars? [b]p10.[/b] The island nation is located on $100$ islands connected by bridges, with some islands also connected to the mainland by a bridge. It is known that from each island you can travel to each (possibly through other islands). In order to improve traffic safety, one-way traffic was introduced on all bridges. It turned out that from each island you can leave only one bridge and that from at least one of the islands you can go to the mainland. Prove that from each island you can get to the mainland, and along a single route. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c2416727_soros_olympiad_in_mathematics]here.[/url]

2023 JBMO Shortlist, G7

Tags: geometry
Let $D$ and $E$ be arbitrary points on the sides $BC$ and $AC$ of triangle $ABC$, respectively. The circumcircle of $\triangle ADC$ meets for the second time the circumcircle of $\triangle BCE$ at point $F$. Line $FE$ meets line $AD$ at point $G$, while line $FD$ meets line $BE$ at point $H$. Prove that lines $CF, AH$ and $BG$ pass through the same point.

2017 IOM, 6

Tags: hexagon , geometry
et $ABCDEF$ be a convex hexagon which has an inscribed circle and a circumcribed. Denote by $\omega_{A}, \omega_{B},\omega_{C},\omega_{D},\omega_{E}$ and $\omega_{F}$ the inscribed circles of the triangles $FAB, ABC, BCD, CDE, DEF$ and $EFA$, respecitively. Let $l_{AB}$, be the external of $\omega_{A}$ and $\omega_{B}$; lines $l_{BC}$, $l_{CD}$, $l_{DE}$, $l_{EF}$, $l_{FA}$ are analoguosly defined. Let $A_1$ be the intersection point of the lines $l_{FA}$ and $l_{AB}$, $B_1, C_1, D_1, E_1, F_1$ are analogously defined. Prove that $A_1D_1, B_1E_1, C_1F_1$ are concurrent.

2020 Novosibirsk Oral Olympiad in Geometry, 4

The altitudes $AN$ and $BM$ are drawn in triangle $ABC$. Prove that the perpendicular bisector to the segment $NM$ divides the segment $AB$ in half.

1950 AMC 12/AHSME, 47

A rectangle inscribed in a triangle has its base coinciding with the base $b$ of the triangle. If the altitude of the triangle is $h$, and the altitude $x$ of the rectangle is half the base of the rectangle, then: $\textbf{(A)}\ x=\dfrac{1}{2}h \qquad \textbf{(B)}\ x=\dfrac{bh}{b+h} \qquad \textbf{(C)}\ x=\dfrac{bh}{2h+b} \qquad \textbf{(D)}\ x=\sqrt{\dfrac{hb}{2}} \qquad \textbf{(E)}\ x=\dfrac{1}{2}b$

2020 Sharygin Geometry Olympiad, 4

Let $ABCD$ be an isosceles trapezoid with bases $AB$ and $CD$. Prove that the centroid of triangle $ABD$ lies on $CF$ where $F$ is the projection of $D$ to $AB$.