This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2006 Iran Team Selection Test, 5

Let $ABC$ be a triangle such that it's circumcircle radius is equal to the radius of outer inscribed circle with respect to $A$. Suppose that the outer inscribed circle with respect to $A$ touches $BC,AC,AB$ at $M,N,L$. Prove that $O$ (Center of circumcircle) is the orthocenter of $MNL$.

2015 Indonesia MO Shortlist, G2

Two circles that are not equal are tangent externally at point $R$. Suppose point $P$ is the intersection of the external common tangents of the two circles. Let $A$ and $B$ are two points on different circles so that $RA$ is perpendicular to $RB$. Show that the line $AB$ passes through $P$.

2008 Harvard-MIT Mathematics Tournament, 6

Determine the number of non-degenerate rectangles whose edges lie completely on the grid lines of the following figure. $ \begin{tabular}{|c|c|c|c|c|c|} \hline & & & & & \\ \hline & & & & & \\ \hline & & \multicolumn{1}{c}{} & & & \\ \cline{1 \minus{} 2}\cline{5 \minus{} 6} & & \multicolumn{1}{c}{} & & & \\ \hline & & & & & \\ \hline & & & & & \\ \hline \end{tabular}$

2006 Purple Comet Problems, 21

In triangle $ABC$, $AB = 52$, $BC = 56$, $CA = 60$. Let $D$ be the foot of the altitude from $A$ and $E$ be the intersection of the internal angle bisector of $\angle BAC$ with $BC$. Find $DE$.

2011 China Team Selection Test, 3

Let $m$ and $n$ be positive integers. A sequence of points $(A_0,A_1,\ldots,A_n)$ on the Cartesian plane is called [i]interesting[/i] if $A_i$ are all lattice points, the slopes of $OA_0,OA_1,\cdots,OA_n$ are strictly increasing ($O$ is the origin) and the area of triangle $OA_iA_{i+1}$ is equal to $\frac{1}{2}$ for $i=0,1,\ldots,n-1$. Let $(B_0,B_1,\cdots,B_n)$ be a sequence of points. We may insert a point $B$ between $B_i$ and $B_{i+1}$ if $\overrightarrow{OB}=\overrightarrow{OB_i}+\overrightarrow{OB_{i+1}}$, and the resulting sequence $(B_0,B_1,\ldots,B_i,B,B_{i+1},\ldots,B_n)$ is called an [i]extension[/i] of the original sequence. Given two [i]interesting[/i] sequences $(C_0,C_1,\ldots,C_n)$ and $(D_0,D_1,\ldots,D_m)$, prove that if $C_0=D_0$ and $C_n=D_m$, then we may perform finitely many [i]extensions[/i] on each sequence until the resulting two sequences become identical.

2007 Moldova Team Selection Test, 3

Let $ABC$ be a triangle with all angles $\leq 120^{\circ}$. Let $F$ be the Fermat point of triangle $ABC$, that is, the interior point of $ABC$ such that $\angle AFB = \angle BFC = \angle CFA = 120^\circ$. For each one of the three triangles $BFC$, $CFA$ and $AFB$, draw its Euler line - that is, the line connecting its circumcenter and its centroid. Prove that these three Euler lines pass through one common point. [i]Remark.[/i] The Fermat point $F$ is also known as the [b]first Fermat point[/b] or the [b]first Toricelli point[/b] of triangle $ABC$. [i]Floor van Lamoen[/i]

2009 Princeton University Math Competition, 5

We divide up the plane into disjoint regions using a circle, a rectangle and a triangle. What is the greatest number of regions that we can get?

2016 Sharygin Geometry Olympiad, P12

Let $BB_1$ be the symmedian of a nonisosceles acute-angled triangle $ABC$. Ray $BB_1$ meets the circumcircle of $ABC$ for the second time at point $L$. Let $AH_A, BH_B, CH_C$ be the altitudes of triangle $ABC$. Ray $BH_B$ meets the circumcircle of $ABC$ for the second time at point $T$. Prove that $H_A, H_C, T, L$ are concyclic.

2013 India Regional Mathematical Olympiad, 3

In an acute-angled triangle $ABC$ with $AB < AC$, the circle $\omega$ touches $AB$ at $B$ and passes through $C$ intersecting $AC$ again at $D$. Prove that the orthocentre of triangle $ABD$ lies on $\omega$ if and only if it lies on the perpendicular bisector of $BC$.

1976 Chisinau City MO, 133

A triangle with a parallelogram inside was placed in a square. Prove that the area of a parallelogram is not more than a quarter of a square.

2011 Tokyo Instutute Of Technology Entrance Examination, 1

Let $f_n\ (n=1,\ 2,\ \cdots)$ be a linear transformation expressed by a matrix $\left( \begin{array}{cc} 1-n & 1 \\ -n(n+1) & n+2 \end{array} \right)$ on the $xy$ plane. Answer the following questions: (1) Prove that there exists 2 lines passing through the origin $O(0,\ 0)$ such that all points of the lines are mapped to the same lines, then find the equation of the lines. (2) Find the area $S_n$ of the figure enclosed by the lines obtained in (1) and the curve $y=x^2$. (3) Find $\sum_{n=1}^{\infty} \frac{1}{S_n-\frac 16}.$ [i]2011 Tokyo Institute of Technlogy entrance exam, Problem 1[/i]

2012 NIMO Problems, 8

A convex 2012-gon $A_1A_2A_3 \dots A_{2012}$ has the property that for every integer $1 \le i \le 1006$, $\overline{A_iA_{i+1006}}$ partitions the polygon into two congruent regions. Show that for every pair of integers $1 \le j < k \le 1006$, quadrilateral $A_jA_kA_{j+1006}A_{k+1006}$ is a parallelogram. [i]Proposed by Lewis Chen[/i]

2005 National High School Mathematics League, 10

In tetrahedron $ABCD$, the volume of tetrahedron $ABCD$ is $\frac{1}{6}$, and $\angle ACB=45^{\circ},AD+BC+\frac{AC}{\sqrt2}=3$, then $CD=$________.

2010 Mexico National Olympiad, 3

Tags: geometry
Let $\mathcal{C}_1$ and $\mathcal{C}_2$ be externally tangent at a point $A$. A line tangent to $\mathcal{C}_1$ at $B$ intersects $\mathcal{C}_2$ at $C$ and $D$; then the segment $AB$ is extended to intersect $\mathcal{C}_2$ at a point $E$. Let $F$ be the midpoint of $\overarc{CD}$ that does not contain $E$, and let $H$ be the intersection of $BF$ with $\mathcal{C}_2$. Show that $CD$, $AF$, and $EH$ are concurrent.

2008 National Olympiad First Round, 21

Let $ABC$ be a right triangle with $m(\widehat{A})=90^\circ$. Let $APQR$ be a square with area $9$ such that $P\in [AC]$, $Q\in [BC]$, $R\in [AB]$. Let $KLMN$ be a square with area $8$ such that $N,K\in [BC]$, $M\in [AB]$, and $L\in [AC]$. What is $|AB|+|AC|$? $ \textbf{(A)}\ 8 \qquad\textbf{(B)}\ 10 \qquad\textbf{(C)}\ 12 \qquad\textbf{(D)}\ 14 \qquad\textbf{(E)}\ 16 $

2010 Austria Beginners' Competition, 4

In the right-angled triangle $ABC$ with a right angle at $C$, the side $BC$ is longer than the side $AC$. The perpendicular bisector of $AB$ intersects the line $BC$ at point $D$ and the line $AC$ at point $E$. The segments $DE$ has the same length as the side $AB$. Find the measures of the angles of the triangle $ABC$. (R. Henner, Vienna)

2012 International Zhautykov Olympiad, 2

Equilateral triangles $ACB'$ and $BDC'$ are drawn on the diagonals of a convex quadrilateral $ABCD$ so that $B$ and $B'$ are on the same side of $AC$, and $C$ and $C'$ are on the same sides of $BD$. Find $\angle BAD + \angle CDA$ if $B'C' = AB+CD$.

2019 Durer Math Competition Finals, 4

Let $ABC$ be an acute-angled triangle having angles $\alpha,\beta,\gamma$ at vertices $A, B, C$ respectively. Let isosceles triangles $BCA_1, CAB_1, ABC_1$ be erected outwards on its sides, with apex angles $2\alpha ,2\beta ,2\gamma$ respectively. Let $A_2$ be the intersection point of lines $AA_1$ and $B_1C_1$ and let us define points $B_2$ and $C_2$ analogously. Find the exact value of the expression $$\frac{AA_1}{A_2A_1}+\frac{BB_1}{B_2B_1}+\frac{CC_1}{C_2C_1}$$

2021 Princeton University Math Competition, A1 / B3

Tags: geometry
A circle is inscribed in a regular octagon with area $2024$. A second regular octagon is inscribed in the circle, and its area can be expressed as $a + b\sqrt{c}$, where $a, b, c$ are integers and $c$ is square-free. Compute $a + b + c$.

2020 Stanford Mathematics Tournament, 10

Tags: geometry
Three circles with radii $23$, $46$, and $69$ are tangent to each other as shown in the figure below (figure is not drawn to scale). Find the radius of the largest circle that can fit inside the shaded region. [img]https://cdn.artofproblemsolving.com/attachments/6/d/158abc178e4ddd72541580958a4ee2348b2026.png[/img]

2018 Sharygin Geometry Olympiad, 10

Tags: geometry
In the plane, $2018$ points are given such that all distances between them are different. For each point, mark the closest one of the remaining points. What is the minimal number of marked points?

2018 Moscow Mathematical Olympiad, 4

$ABCD$ is convex and $AB\not \parallel CD,BC \not \parallel DA$. $P$ is variable point on $AD$. Circumcircles of $\triangle ABP$ and $\triangle CDP$ intersects at $Q$. Prove, that all lines $PQ$ goes through fixed point.

1985 Kurschak Competition, 3

We reflected each vertex of a triangle on the opposite side. Prove that the area of the triangle formed by these three reflection points is smaller than the area of the initial triangle multiplied by five.

Novosibirsk Oral Geo Oly VII, 2021.3

Prove that in a triangle one of the sides is twice as large as the other if and only if a median and an angle bisector of this triangle are perpendicular

2020 AMC 12/AHSME, 7

Seven cubes, whose volumes are $1$, $8$, $27$, $64$, $125$, $216$, and $343$ cubic units, are stacked vertically to form a tower in which the volumes of the cubes decrease from bottom to top. Except for the bottom cube, the bottom face of each cube lies completely on top of the cube below it. What is the total surface area of the tower (including the bottom) in square units? $\textbf{(A) } 644 \qquad \textbf{(B) } 658 \qquad \textbf{(C) } 664 \qquad \textbf{(D) } 720 \qquad \textbf{(E) } 749$