This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

1987 Traian Lălescu, 2.2

In a triangle $ ABC $ that has perimeter $ P, $ prove that it's isosceles if and only if $$ P^2+\sin^2 (\angle ABC-\angle BCA) =4\cdot AB\cdot AC\cdot\cos^2\frac{\angle ABC}{2}\cdot\cos^2\frac{\angle BCA}{2} . $$

2003 Bulgaria Team Selection Test, 1

Cut $2003$ disjoint rectangles from an acute-angled triangle $ABC$, such that any of them has a parallel side to $AB$ and the sum of their areas is maximal.

2015 Costa Rica - Final Round, 6

Given the trapezoid $ABCD$ with the $BC\parallel AD$, let $C_1$ and $C_2$ be circles with diameters $AB$ and $CD$ respectively. Let $M$ and $N$ be the intersection points of $C_1$ with $AC$ and $BD$ respectively. Let $K$ and $L$ be the intersection points of $C_2$ with $AC$ and $BD$ respectively. Given $M\ne A$, $N\ne B$, $K\ne C$, $L\ne D$. Prove that $NK \parallel ML$.

2023 Singapore Senior Math Olympiad, 1

Tags: geometry
Let $ABCD$ be a square, $E$ be a point on the side $DC$, $F$ and $G$ be the feet of the altitudes from $B$ to $AE$ and from $A$ to $BE$, respectively. Suppose $DF$ and $CG$ intersect at $H$. Prove that $\angle AHB=90^\circ$.

Novosibirsk Oral Geo Oly VIII, 2016.5

In the parallelogram $CMNP$ extend the bisectors of angles $MCN$ and $PCN$ and intersect with extensions of sides PN and $MN$ at points $A$ and $B$, respectively. Prove that the bisector of the original angle $C$ of the the parallelogram is perpendicular to $AB$. [img]https://cdn.artofproblemsolving.com/attachments/f/3/fde8ef133758e06b1faf8bdd815056173f9233.png[/img]

Kharkiv City MO Seniors - geometry, 2017.10.4

Tags: geometry , midpoint , angle
In the quadrangle $ABCD$, the angle at the vertex $A$ is right. Point $M$ is the midpoint of the side $BC$. It turned out that $\angle ADC = \angle BAM$. Prove that $\angle ADB = \angle CAM$.

Estonia Open Senior - geometry, 2003.2.4

Tags: geometry , cevian , ratio
Consider the points $D, E$ and $F$ on the respective sides $BC, CA$ and $AB$ of the triangle $ABC$ in a way that the segments $AD, BE$ and $CF$ have a common point $P$. Let $\frac{|AP|}{|PD|}= x,$ $\frac{|BP|}{|PE|}= y$ and $\frac{|CP|}{|PF|}= z$. Prove that $xyz - (x + y + z) = 2$.

2019 Korea National Olympiad, 6

In acute triangle $ABC$, $AB>AC$. Let $I$ the incenter, $\Omega$ the circumcircle of triangle $ABC$, and $D$ the foot of perpendicular from $A$ to $BC$. $AI$ intersects $\Omega$ at point $M(\neq A)$, and the line which passes $M$ and perpendicular to $AM$ intersects $AD$ at point $E$. Now let $F$ the foot of perpendicular from $I$ to $AD$. Prove that $ID\cdot AM=IE\cdot AF$.

2022 Sharygin Geometry Olympiad, 9.1

Tags: geometry
Let $BH$ be an altitude of right angled triangle $ABC$($\angle B = 90^o$). An excircle of triangle $ABH$ opposite to $B$ touches $AB$ at point $A_1$; a point $C_1$ is defined similarly. Prove that $AC // A_1C_1$.

May Olympiad L2 - geometry, 2016.5

Rosa and Sara play with a triangle $ABC$, right at $B$. Rosa begins by marking two interior points of the hypotenuse $AC$, then Sara marks an interior point of the hypotenuse $AC$ different from those of Rosa. Then, from these three points the perpendiculars to the sides $AB$ and $BC$ are drawn, forming the following figure. [img]https://cdn.artofproblemsolving.com/attachments/9/9/c964bbacc4a5960bee170865cc43902410e504.png[/img] Sara wins if the area of the shaded surface is equal to the area of the unshaded surface, in other case wins Rosa. Determine who of the two has a winning strategy.

2012 Singapore Junior Math Olympiad, 3

In $\vartriangle ABC$, the external bisectors of $\angle A$ and $\angle B$ meet at a point $D$. Prove that the circumcentre of $\vartriangle ABD$ and the points $C, D$ lie on the same straight line.

2013 APMO, 5

Let $ABCD$ be a quadrilateral inscribed in a circle $\omega$, and let $P$ be a point on the extension of $AC$ such that $PB$ and $PD$ are tangent to $\omega$. The tangent at $C$ intersects $PD$ at $Q$ and the line $AD$ at $R$. Let $E$ be the second point of intersection between $AQ$ and $\omega$. Prove that $B$, $E$, $R$ are collinear.

2018 Taiwan TST Round 2, 2

Tags: geometry
Let $ABC$ be a triangle with circumcircle $\Omega$, circumcenter $O$ and orthocenter $H$. Let $S$ lie on $\Omega$ and $P$ lie on $BC$ such that $\angle ASP=90^\circ$, line $SH$ intersects the circumcircle of $\triangle APS$ at $X\neq S$. Suppose $OP$ intersects $CA,AB$ at $Q,R$, respectively, $QY,RZ$ are the altitude of $\triangle AQR$. Prove that $X,Y,Z$ are collinear. [i]Proposed by Shuang-Yen Lee[/i]

2015 Sharygin Geometry Olympiad, P7

The altitudes $AA_1$ and $CC_1$ of a triangle $ABC$ meet at point $H$. Point $H_A$ is symmetric to $H$ about $A$. Line $H_AC_1$ meets $BC$ at point $C' $, point $A' $ is defined similarly. Prove that $A' C' // AC$.

2016 PUMaC Geometry B, 2

Tags: geometry
Let $\vartriangle ABC$ be an equilateral triangle with side length $1$ and let $\Gamma$ the circle tangent to $AB$ and $AC$ at $B$ and $C$, respectively. Let $P$ be on side $AB$ and $Q$ be on side $AC$ so that $PQ // BC$, and the circle through $A, P$, and $Q$ is tangent to $\Gamma$ . If the area of $\vartriangle APQ$ can be written in the form $\frac{\sqrt{a}}{b}$ for positive integers $a$ and $b$, where $a$ is not divisible by the square of any prime, fi nd $a + b$.

LMT Team Rounds 2021+, 1

Tags: algebra , geometry
Derek and Jacob have a cake in the shape a rectangle with dimensions $14$ inches by $9$ inches. They make a deal to split it: Derek takes home the portion of the cake that is less than one inch from the border, while Jacob takes home the remainder of the cake. Let $D : J$ be the ratio of the amount of cake Derek took to the amount of cake Jacob took, where $D$ and $J$ are relatively prime positive integers. Find $D + J$.

2017 May Olympiad, 3

Let $ABCD$ be a quadrilateral such that $\angle ABC = \angle ADC = 90º$ and $\angle BCD$ > $90º$. Let $P$ be a point inside of the $ABCD$ such that $BCDP$ is parallelogram, the line $AP$ intersects $BC$ in $M$. If $BM = 2, MC = 5, CD = 3$. Find the length of $AM$.

2010 Sharygin Geometry Olympiad, 1

Let $O, I$ be the circumcenter and the incenter of a right-angled triangle, $R, r$ be the radii of respective circles, $J$ be the reflection of the vertex of the right angle in $I$. Find $OJ$.

2023 Taiwan TST Round 3, 6

Tags: geometry
Given triangle $ABC$ with $A$-excenter $I_A$, the foot of the perpendicular from $I_A$ to $BC$ is $D$. Let the midpoint of segment $I_AD$ be $M$, $T$ lies on arc $BC$(not containing $A$) satisfying $\angle BAT=\angle DAC$, $I_AT$ intersects the circumcircle of $ABC$ at $S\neq T$. If $SM$ and $BC$ intersect at $X$, the perpendicular bisector of $AD$ intersects $AC,AB$ at $Y,Z$ respectively, prove that $AX,BY,CZ$ are concurrent.

2018 Greece Junior Math Olympiad, 4

Let $ABC$ with $AB<AC<BC$ be an acute angled triangle and $c$ its circumcircle. Let $D$ be the point diametrically opposite to $A$. Point $K$ is on $BD$ such that $KB=KC$. The circle $(K, KC)$ intersects $AC$ at point $E$. Prove that the circle $(BKE)$ is tangent to $c$.

2000 National High School Mathematics League, 11

A sphere is tangent to six edges of a regular tetrahedron. If the length of each edge is $a$, then the volume of the sphere is________.

1987 IMO Longlists, 16

Let $ABC$ be a triangle. For every point $M$ belonging to segment $BC$ we denote by $B'$ and $C'$ the orthogonal projections of $M$ on the straight lines $AC$ and $BC$. Find points $M$ for which the length of segment $B'C'$ is a minimum.

2022-23 IOQM India, 11

Let $AB$ be diameter of a circle $\omega$ and let $C$ be a point on $\omega$, different from $A$ and $B$. The perpendicular from $C$ intersects $AB$ at $D$ and $\omega$ at $E(\neq C)$. The circle with centre at $C$ and radius $CD$ intersects $\omega$ at $P$ and $Q$. If the perimeter of the triangle $PEQ$ is $24$, find the length of the side $PQ$

2022 China Second Round A2, 2

$A,B,C,D,E$ are points on a circle $\omega$, satisfying $AB=BD$, $BC=CE$. $AC$ meets $BE$ at $P$. $Q$ is on $DE$ such that $BE//AQ$. Suppose $\odot(APQ)$ intersects $\omega$ again at $T$. $A'$ is the reflection of $A$ wrt $BC$. Prove that $A'BPT$ lies on the same circle.

1991 India National Olympiad, 2

Given an acute-angled triangle $ABC$, let points $A' , B' , C'$ be located as follows: $A'$ is the point where altitude from $A$ on $BC$ meets the outwards-facing semicircle on $BC$ as diameter. Points $B', C'$ are located similarly. Prove that $A[BCA']^2 + A[CAB']^2 + A[ABC']^2 = A[ABC]^2$ where $A[ABC]$ is the area of triangle $ABC$.