This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2011 Iran MO (3rd Round), 6

Tags: geometry
We call two circles in the space fighting if they are intersected or they are clipsed. Find a good necessary and sufficient condition for four distinct points $A,B,A',B'$ such that each circle passing through $A,B$ and each circle passing through $A',B'$ are fighting circles. [i]proposed by Ali Khezeli[/i]

2021 Polish Junior MO Finals, 2

Point $M$ is the midpoint of the hypotenuse $AB$ of a right angled triangle $ABC$. Points $P$ and $Q$ lie on segments $AM$ and $MB$ respectively and $PQ=CQ$. Prove that $AP\leq 2\cdot MQ$.

2008 IMS, 3

Let $ A,B$ be different points on a parabola. Prove that we can find $ P_1,P_2,\dots,P_{n}$ between $ A,B$ on the parabola such that area of the convex polygon $ AP_1P_2\dots P_nB$ is maximum. In this case prove that the ratio of $ S(AP_1P_2\dots P_nB)$ to the sector between $ A$ and $ B$ doesn't depend on $ A$ and $ B$, and only depends on $ n$.

2010 Sharygin Geometry Olympiad, 10

Tags: geometry
Let three lines forming a triangle $ABC$ be given. Using a two-sided ruler and drawing at most eight lines construct a point $D$ on the side $AB$ such that $\frac{AD}{BD}=\frac{BC}{AC}.$

2020 Ukrainian Geometry Olympiad - April, 2

Let $ABC$ be an isosceles triangle with $AB=AC$. Circle $\Gamma$ lies outside $ABC$ and touches line $AC$ at point $C$. The point $D$ is chosen on circle $\Gamma$ such that the circumscribed circle of the triangle $ABD$ touches externally circle $\Gamma$. The segment $AD$ intersects circle $\Gamma$ at a point $E$ other than $D$. Prove that $BE$ is tangent to circle $\Gamma$ .

2012 Sharygin Geometry Olympiad, 22

A circle $\omega$ with center $I$ is inscribed into a segment of the disk, formed by an arc and a chord $AB$. Point $M$ is the midpoint of this arc $AB$, and point $N$ is the midpoint of the complementary arc. The tangents from $N$ touch $\omega$ in points $C$ and $D$. The opposite sidelines $AC$ and $BD$ of quadrilateral $ABCD$ meet in point $X$, and the diagonals of $ABCD$ meet in point $Y$. Prove that points $X, Y, I$ and $M$ are collinear.

2018 Peru Iberoamerican Team Selection Test, P9

Let $\Gamma$ be the circumcircle of a triangle $ABC$ with $AB <BC$, and let $M$ be the midpoint from the side $AC$ . The median of side $AC$ cuts $\Gamma$ at points $X$ and $Y$ ($X$ in the arc $ABC$). The circumcircle of the triangle $BMY$ cuts the line $AB$ at $P$ ($P \ne B$) and the line $BC$ in $Q$ ($Q \ne B$). The circumcircles of the triangles $PBC$ and $QBA$ are cut in $R$ ($R \ne B$). Prove that points $X, B$ and $R$ are collinear.

2004 Chile National Olympiad, 3

The perimeter, that is, the sum of the lengths of all sides of a convex quadrilateral $ ABCD $, is equal to $2004$ meters; while the length of its diagonal $ AC $ is equal to $1001$ meters. Find out if the length of the other diagonal $ BD $ can: a) To be equal to only one meter. b) Be equal to the length of the diagonal $ AC $.

2011 Sharygin Geometry Olympiad, 15

Given a circle with center $O$ and radius equal to $1$. $AB$ and $AC$ are the tangents to this circle from point $A$. Point $M$ on the circle is such that the areas of quadrilaterals $OBMC$ and $ABMC$ are equal. Find $MA$.

2004 India IMO Training Camp, 1

Let $ABC$ be a triangle and let $P$ be a point in its interior. Denote by $D$, $E$, $F$ the feet of the perpendiculars from $P$ to the lines $BC$, $CA$, $AB$, respectively. Suppose that \[AP^2 + PD^2 = BP^2 + PE^2 = CP^2 + PF^2.\] Denote by $I_A$, $I_B$, $I_C$ the excenters of the triangle $ABC$. Prove that $P$ is the circumcenter of the triangle $I_AI_BI_C$. [i]Proposed by C.R. Pranesachar, India [/i]

2003 Iran MO (3rd Round), 25

Tags: geometry
Let $ A,B,C,Q$ be fixed points on plane. $ M,N,P$ are intersection points of $ AQ,BQ,CQ$ with $ BC,CA,AB$. $ D',E',F'$ are tangency points of incircle of $ ABC$ with $ BC,CA,AB$. Tangents drawn from $ M,N,P$ (not triangle sides) to incircle of $ ABC$ make triangle $ DEF$. Prove that $ DD',EE',FF'$ intersect at $ Q$.

2023 LMT Fall, 12

Tags: geometry
In triangle $ABC$ with $AB = 7$, $AC = 8$, and $BC = 9$, the $A$-excircle is tangent to $BC$ at point $D$ and also tangent to lines $AB$ and $AC$ at points $ $ and $F$, respectively. Find $[DEF]$. (The $A$-excircle is the circle tangent to segment $BC$ and the extensions of rays $AB$ and $AC$. Also, $[XY Z]$ denotes the area of triangle $XY Z$.)

May Olympiad L1 - geometry, 1997.2

In the rectangle $ABCD, M, N, P$ and $Q$ are the midpoints of the sides. If the area of the shaded triangle is $1$, calculate the area of the rectangle $ABCD$. [img]https://2.bp.blogspot.com/-9iyKT7WP5fc/XNYuXirLXSI/AAAAAAAAKK4/10nQuSAYypoFBWGS0cZ5j4vn_hkYr8rcwCK4BGAYYCw/s400/may3.gif[/img]

1974 USAMO, 5

Consider the two triangles $ ABC$ and $ PQR$ shown below. In triangle $ ABC, \angle ADB \equal{} \angle BDC \equal{} \angle CDA \equal{} 120^\circ$. Prove that $ x\equal{}u\plus{}v\plus{}w$. [asy]unitsize(7mm); defaultpen(linewidth(.7pt)+fontsize(10pt)); pair C=(0,0), B=4*dir(5); pair A=intersectionpoints(Circle(C,5), Circle(B,6))[0]; pair Oc=scale(sqrt(3)/3)*rotate(30)*(B-A)+A; pair Ob=scale(sqrt(3)/3)*rotate(30)*(A-C)+C; pair D=intersectionpoints(Circle(Ob,length(Ob-C)), Circle(Oc,length(Oc-B)))[1]; real s=length(A-D)+length(B-D)+length(C-D); pair P=(6,0), Q=P+(s,0), R=rotate(60)*(s,0)+P; pair M=intersectionpoints(Circle(P,length(B-C)), Circle(Q,length(A-C)))[0]; draw(A--B--C--A--D--B); draw(D--C); label("$B$",B,SE); label("$C$",C,SW); label("$A$",A,N); label("$D$",D,NE); label("$a$",midpoint(B--C),S); label("$b$",midpoint(A--C),WNW); label("$c$",midpoint(A--B),NE); label("$u$",midpoint(A--D),E); label("$v$",midpoint(B--D),N); label("$w$",midpoint(C--D),NNW); draw(P--Q--R--P--M--Q); draw(M--R); label("$P$",P,SW); label("$Q$",Q,SE); label("$R$",R,N); label("$M$",M,NW); label("$x$",midpoint(P--R),NW); label("$x$",midpoint(P--Q),S); label("$x$",midpoint(Q--R),NE); label("$c$",midpoint(R--M),ESE); label("$a$",midpoint(P--M),NW); label("$b$",midpoint(Q--M),NE);[/asy]

2023 Thailand Online MO, 8

Tags: geometry
Let $ABC$ be an acute triangle with $AB<AC$. Let $M$ be the midpoint of $BC$ and $E$ be the foot of altitude from $B$ to $AC$. The point $C'$ is the reflection of $C$ across $AM$. The point $D$ not equal to $C$ is placed on line $BC$ such that $AD=AC$. Prove that $B$ is the incenter of triangle $DEC'$.

1999 National Olympiad First Round, 29

The length of the altitude of equilateral triangle $ ABC$ is $3$. A circle with radius $2$, which is tangent to $ \left[BC\right]$ at its midpoint, meets other two sides. If the circle meets $ AB$ and $ AC$ at $ D$ and $ E$, at the outer of $\triangle ABC$ , find the ratio $ \frac {Area\, \left(ABC\right)}{Area\, \left(ADE\right)}$. $\textbf{(A)}\ 2\left(5 \plus{} \sqrt {3} \right) \qquad\textbf{(B)}\ 7\sqrt {2} \qquad\textbf{(C)}\ 5\sqrt {3} \\ \qquad\textbf{(D)}\ 2\left(3 \plus{} \sqrt {5} \right) \qquad\textbf{(E)}\ 2\left(\sqrt {3} \plus{} \sqrt {5} \right)$

2012 Baltic Way, 15

The circumcentre $O$ of a given cyclic quadrilateral $ABCD$ lies inside the quadrilateral but not on the diagonal $AC$. The diagonals of the quadrilateral intersect at $I$. The circumcircle of the triangle $AOI$ meets the sides $AD$ and $AB$ at points $P$ and $Q$, respectively; the circumcircle of the triangle $COI$ meets the sides $CB$ and $CD$ at points $R$ and $S$, respectively. Prove that $PQRS$ is a parallelogram.

2005 AMC 12/AHSME, 15

Let $ \overline{AB}$ be a diameter of a circle and $ C$ be a point on $ \overline{AB}$ with $ 2 \cdot AC \equal{} BC$. Let $ D$ and $ E$ be points on the circle such that $ \overline{DC} \perp \overline{AB}$ and $ \overline{DE}$ is a second diameter. What is the ratio of the area of $ \triangle DCE$ to the area of $ \triangle ABD$? [asy]unitsize(2.5cm); defaultpen(fontsize(10pt)+linewidth(.8pt)); dotfactor=3; pair O=(0,0), C=(-1/3.0), B=(1,0), A=(-1,0); pair D=dir(aCos(C.x)), E=(-D.x,-D.y); draw(A--B--D--cycle); draw(D--E--C); draw(unitcircle,white); drawline(D,C); dot(O); clip(unitcircle); draw(unitcircle); label("$E$",E,SSE); label("$B$",B,E); label("$A$",A,W); label("$D$",D,NNW); label("$C$",C,SW); draw(rightanglemark(D,C,B,2));[/asy]$ \textbf{(A)} \ \frac {1}{6} \qquad \textbf{(B)} \ \frac {1}{4} \qquad \textbf{(C)}\ \frac {1}{3} \qquad \textbf{(D)}\ \frac {1}{2} \qquad \textbf{(E)}\ \frac {2}{3}$

1994 Vietnam Team Selection Test, 1

Given an equilateral triangle $ABC$ and a point $M$ in the plane ($ABC$). Let $A', B', C'$ be respectively the symmetric through $M$ of $A, B, C$. [b]I.[/b] Prove that there exists a unique point $P$ equidistant from $A$ and $B'$, from $B$ and $C'$ and from $C$ and $A'$. [b]II.[/b] Let $D$ be the midpoint of the side $AB$. When $M$ varies ($M$ does not coincide with $D$), prove that the circumcircle of triangle $MNP$ ($N$ is the intersection of the line $DM$ and $AP$) pass through a fixed point.

2014 BMT Spring, 8

Tags: geometry
Semicircle $O$ has diameter $AB = 12$. Arc $AC = 135^o$ . Let $D$ be the midpoint of arc $AC$. Compute the region bounded by the lines $CD$ and $DB$ and the arc $CB$.

2012 ELMO Problems, 5

Let $ABC$ be an acute triangle with $AB<AC$, and let $D$ and $E$ be points on side $BC$ such that $BD=CE$ and $D$ lies between $B$ and $E$. Suppose there exists a point $P$ inside $ABC$ such that $PD\parallel AE$ and $\angle PAB=\angle EAC$. Prove that $\angle PBA=\angle PCA$. [i]Calvin Deng.[/i]

2007 Cono Sur Olympiad, 2

Tags: geometry
Let $ABCDE$ be a convex pentagon that satisfies all of the following:[list] [*]There is a circle $\Gamma$ tangent to each of the sides. [*]The lengths of the sides are all positive integers. [*]At least one of the sides of the pentagon has length $1$. [*]The side $AB$ has length $2$.[/list] Let $P$ be the point of tangency of $\Gamma$ with $AB$.[list] (a) Determine the lengths of the segments $AP$ and $BP$. (b) Give an example of a pentagon satisfying the given conditions.[/list]

2004 Turkey MO (2nd round), 1

In a triangle $\triangle ABC$ with$\angle B>\angle C$, the altitude, the angle bisector, and the median from $A$ intersect $BC$ at $H, L$ and $D$, respectively. Show that $\angle HAL=\angle DAL$ if and only if $\angle BAC=90^{\circ}$.

2010 ELMO Shortlist, 4

Let $ABC$ be a triangle with circumcircle $\omega$, incenter $I$, and $A$-excenter $I_A$. Let the incircle and the $A$-excircle hit $BC$ at $D$ and $E$, respectively, and let $M$ be the midpoint of arc $BC$ without $A$. Consider the circle tangent to $BC$ at $D$ and arc $BAC$ at $T$. If $TI$ intersects $\omega$ again at $S$, prove that $SI_A$ and $ME$ meet on $\omega$. [i]Amol Aggarwal.[/i]

2025 CMIMC Geometry, 2

Tags: geometry
Given a cube of side length $4,$ place eight spheres of radius $1$ inside the cube so that each sphere is externally tangent to three others. What is the radius of the largest sphere contained inside the cube which is externally tangent to all eight?