This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

EMCC Team Rounds, 2017

[b]p1.[/b] Compute $2017 + 7201 + 1720 + 172$. [b]p2. [/b]A number is called [i]downhill [/i]if its digits are distinct and in descending order. (For example, $653$ and $8762$ are downhill numbers, but $97721$ is not.) What is the smallest downhill number greater than 86432? [b]p3.[/b] Each vertex of a unit cube is sliced off by a planar cut passing through the midpoints of the three edges containing that vertex. What is the ratio of the number of edges to the number of faces of the resulting solid? [b]p4.[/b] In a square with side length $5$, the four points that divide each side into five equal segments are marked. Including the vertices, there are $20$ marked points in total on the boundary of the square. A pair of distinct points $A$ and $B$ are chosen randomly among the $20$ points. Compute the probability that $AB = 5$. [b]p5.[/b] A positive two-digit integer is one less than five times the sum of its digits. Find the sum of all possible such integers. [b]p6.[/b] Let $$f(x) = 5^{4^{3^{2^{x}}}}.$$ Determine the greatest possible value of $L$ such that $f(x) > L$ for all real numbers $x$. [b]p7.[/b] If $\overline{AAAA}+\overline{BB} = \overline{ABCD}$ for some distinct base-$10$ digits $A, B, C, D$ that are consecutive in some order, determine the value of $ABCD$. (The notation $\overline{ABCD}$ refers to the four-digit integer with thousands digit $A$, hundreds digit $B$, tens digit $C$, and units digit $D$.) [b]p8.[/b] A regular tetrahedron and a cube share an inscribed sphere. What is the ratio of the volume of the tetrahedron to the volume of the cube? [b]p9.[/b] Define $\lfloor x \rfloor$ as the greatest integer less than or equal to x, and ${x} = x - \lfloor x \rfloor$ as the fractional part of $x$. If $\lfloor x^2 \rfloor =2 \lfloor x \rfloor$ and $\{x^2\} =\frac12 \{x\}$, determine all possible values of $x$. [b]p10.[/b] Find the largest integer $N > 1$ such that it is impossible to divide an equilateral triangle of side length $ 1$ into $N$ smaller equilateral triangles (of possibly different sizes). [b]p11.[/b] Let $f$ and $g$ be two quadratic polynomials. Suppose that $f$ has zeroes $2$ and $7$, $g$ has zeroes $1$ and $ 8$, and $f - g$ has zeroes $4$ and $5$. What is the product of the zeroes of the polynomial $f + g$? [b]p12.[/b] In square $PQRS$, points $A, B, C, D, E$, and $F$ are chosen on segments $PQ$, $QR$, $PR$, $RS$, $SP$, and $PR$, respectively, such that $ABCDEF$ is a regular hexagon. Find the ratio of the area of $ABCDEF$ to the area of $PQRS$. [b]p13.[/b] For positive integers $m$ and $n$, define $f(m, n)$ to be the number of ways to distribute $m$ identical candies to $n$ distinct children so that the number of candies that any two children receive differ by at most $1$. Find the number of positive integers n satisfying the equation $f(2017, n) = f(7102, n)$. [b]p14.[/b] Suppose that real numbers $x$ and $y$ satisfy the equation $$x^4 + 2x^2y^2 + y^4 - 2x^2 + 32xy - 2y^2 + 49 = 0.$$ Find the maximum possible value of $\frac{y}{x}$. [b]p15.[/b] A point $P$ lies inside equilateral triangle $ABC$. Let $A'$, $B'$, $C'$ be the feet of the perpendiculars from $P$ to $BC, AC, AB$, respectively. Suppose that $PA = 13$, $PB = 14$, and $PC = 15$. Find the area of $A'B'C'$. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

Denmark (Mohr) - geometry, 2004.1

The width of rectangle $ABCD$ is twice its height, and the height of rectangle $EFCG$ is twice its width. The point $E$ lies on the diagonal $BD$. Which fraction of the area of the big rectangle is that of the small one? [img]https://1.bp.blogspot.com/-aeqefhbBh5E/XzcBjhgg7sI/AAAAAAAAMXM/B0qSgWDBuqc3ysd-mOitP1LarOtBdJJ3gCLcBGAsYHQ/s0/2004%2BMohr%2Bp1.png[/img]

1989 AMC 12/AHSME, 19

A triangle is inscribed in a circle. The vertices of the triangle divide the circle into three arcs of lengths $3$, $4$, and $5$. What is the area of the triangle? $\textbf{(A)}\ 6 \qquad \textbf{(B)}\ \frac{18}{\pi^2} \qquad \textbf{(C)}\ \frac{9}{\pi^2}\left(\sqrt{3}-1\right) \qquad \textbf{(D)}\ \frac{9}{\pi^2}\left(\sqrt{3}+1\right) \qquad \textbf{(E)}\ \frac{9}{\pi^2}\left(\sqrt{3}+3\right)$

1970 IMO, 2

In the tetrahedron $ABCD,\angle BDC=90^o$ and the foot of the perpendicular from $D$ to $ABC$ is the intersection of the altitudes of $ABC$. Prove that: \[ (AB+BC+CA)^2\le6(AD^2+BD^2+CD^2). \] When do we have equality?

2019 BMT Spring, 3

A cylinder with radius $5$ and height $1$ is rolling on the (unslanted) floor. Inside the cylinder, there is water that has constant height $\frac{15}{2}$ as the cylinder rolls on the floor. What is the volume of the water?

2017 Bosnia and Herzegovina Team Selection Test, Problem 6

Given is an acute triangle $ABC$. $M$ is an arbitrary point at the side $AB$ and $N$ is midpoint of $AC$. The foots of the perpendiculars from $A$ to $MC$ and $MN$ are points $P$ and $Q$. Prove that center of the circumcircle of triangle $PQN$ lies on the fixed line for all points $M$ from the side $AB$.

2000 Tournament Of Towns, 2

What is the largest integer $n$ such that one can find $n$ points on the surface of a cube, not all lying on one face and being the vertices of a regular $n$-gon? (A Shapovalov)

2007 ITest, 32

When a rectangle frames a parabola such that a side of the rectangle is parallel to the parabola's axis of symmetry, the parabola divides the rectangle into regions whose areas are in the ratio $2$ to $1$. How many integer values of $k$ are there such that $0<k\leq 2007$ and the area between the parabola $y=k-x^2$ and the $x$-axis is an integer? [asy] import graph; size(300); defaultpen(linewidth(0.8)+fontsize(10)); real k=1.5; real endp=sqrt(k); real f(real x) { return k-x^2; } path parabola=graph(f,-endp,endp)--cycle; filldraw(parabola, lightgray); draw((endp,0)--(endp,k)--(-endp,k)--(-endp,0)); label("Region I", (0,2*k/5)); label("Box II", (51/64*endp,13/16*k)); label("area(I) = $\frac23$\,area(II)",(5/3*endp,k/2)); [/asy]

1957 Poland - Second Round, 5

Given a segment $ AB $ and a line $ m $ parallel to this segment. Find the midpoint of the segment $ AB $ using only a ruler, i.e. drawing only straight lines.

2003 Iran MO (3rd Round), 12

There is a lamp in space.(Consider lamp a point) Do there exist finite number of equal sphers in space that the light of the lamp can not go to the infinite?(If a ray crash in a sphere it stops)

2010 Contests, 2

Let $ABC$ be a triangle with $AB = AC$. The incircle touches $BC$, $AC$ and $AB$ at $D$, $E$ and $F$ respectively. Let $P$ be a point on the arc $\overarc{EF}$ that does not contain $D$. Let $Q$ be the second point of intersection of $BP$ and the incircle of $ABC$. The lines $EP$ and $EQ$ meet the line $BC$ at $M$ and $N$, respectively. Prove that the four points $P, F, B, M$ lie on a circle and $\frac{EM}{EN} = \frac{BF}{BP}$.

2004 Junior Balkan Team Selection Tests - Romania, 1

Let $ABC$ be a triangle inscribed in the circle $K$ and consider a point $M$ on the arc $BC$ that do not contain $A$. The tangents from $M$ to the incircle of $ABC$ intersect the circle $K$ at the points $N$ and $P$. Prove that if $\angle BAC = \angle NMP$, then triangles $ABC$ and $MNP$ are congruent. Valentin Vornicu [hide= about Romania JBMO TST 2004 in aops]I found the Romania JBMO TST 2004 links [url=https://artofproblemsolving.com/community/c6h5462p17656]here [/url] but they were inactive. So I am asking for solution for the only geo I couldn't find using search. The problems were found [url=https://artofproblemsolving.com/community/c6h5135p16284]here[/url].[/hide]

2016 APMC, 7

Let $\triangle ABC$ be given, it's $A-$mixtilinear incirlce, $\omega$, and it's excenter $I_A$. Let $H$ be the foot of altitude from $A$ to $BC$, $E$ midpoint of arc $\overarc{BAC}$ and denote by $M$ and $N$, midpoints of $BC$ and $AH$, respectively. Suposse that $MN\cap AE=\{ P \}$ and that line $I_AP$ meet $\omega$ at $S$ and $T$ in this order: $I_A-T-S-P$. Prove that circumcircle of $\triangle BSC$ and $\omega$ are tangent to each other. [hide=Diagram] [asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */ import graph; size(10.48006497171429cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -14.1599662489562, xmax = 15.320098722758091, ymin = -10.77766346689139, ymax = 5.5199497728160765; /* image dimensions */ /* draw figures */ draw(circle((0.025918528679950675,-0.7846460299371317), 4.597564438637676)); draw(circle((-0.9401249699191643,-2.0521899279943225), 3.003855690249927), red); draw((-2.4211259444978057,3.107599095143759)--(-4.242260757102907,-2.493518275554076), linewidth(1.2) + blue); draw((-4.242260757102907,-2.493518275554076)--(4.286443606492271,-2.5125131627798423), linewidth(1.2) + blue); draw((4.286443606492271,-2.5125131627798423)--(-2.4211259444978057,3.107599095143759), linewidth(1.2) + blue); draw((-2.4211259444978057,3.107599095143759)--(-2.433609564871039,-2.4975464519291233)); draw((-4.381282878515476,2.5449802910435655)--(1.435215864174395,-10.327847927108488), linewidth(1.2) + dotted); draw((-4.381282878515476,2.5449802910435655)--(0.022091424694681727,-2.5030157191669593), linetype("4 4")); draw(circle((0.0212183867796688,-2.8950097429721975), 4.282341626812516), red); draw((0.03615806773666919,3.8129070061099433)--(-2.4211259444978057,3.107599095143759)); draw((-2.4211259444978057,3.107599095143759)--(-4.381282878515476,2.5449802910435655), linetype("2 2") + green); /* dots and labels */ dot((-4.242260757102907,-2.493518275554076),linewidth(4.pt) + dotstyle); label("$B$", (-4.8714663963993114,-2.647851734263423), NE * labelscalefactor); dot((4.286443606492271,-2.5125131627798423),linewidth(4.pt) + dotstyle); label("$C$", (4.474018117829703,-2.5908670725861245), NE * labelscalefactor); dot((-2.4211259444978057,3.107599095143759),linewidth(4.pt) + dotstyle); label("$A$", (-2.5350952678420575,3.278553080175656), NE * labelscalefactor); dot((0.022091424694681727,-2.5030157191669593),linewidth(3.pt) + dotstyle); label("$M$", (-0.027770154268419445,-3.0657392532302814), NE * labelscalefactor); label("$\omega$", (-1.1294736132628969,0.5812790941168441), NE * labelscalefactor,red); dot((-2.433609564871039,-2.4975464519291233),linewidth(3.pt) + dotstyle); label("$H$", (-2.9529827867709972,-3.0657392532302814), NE * labelscalefactor); dot((-2.4273677546844223,0.3050263216073179),linewidth(3.pt) + dotstyle); label("$N$", (-2.2691668467054598,0.25836601127881736), NE * labelscalefactor); dot((1.435215864174395,-10.327847927108488),linewidth(3.pt) + dotstyle); label("$I_A$", (1.5678003725511684,-10.11284241398957), NE * labelscalefactor); dot((-4.381282878515476,2.5449802910435655),linewidth(3.pt) + dotstyle); label("$P$", (-4.643527749710799,2.708706463402667), NE * labelscalefactor); dot((-3.1988410259345286,-0.0719498450384039),linewidth(3.pt) + dotstyle); label("$S$", (-3.0859469973392963,-0.17851639491380702), NE * labelscalefactor); dot((-0.9468150550874253,-5.056038168270003),linewidth(3.pt) + dotstyle); label("$T$", (-0.8255554176782134,-4.908243314129611), NE * labelscalefactor); dot((0.03615806773666919,3.8129070061099433),linewidth(3.pt) + dotstyle); label("$E$", (-0.008775267044376731,3.962369020303242), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */ [/asy][/hide]

DMM Devil Rounds, 2011

[u]Round 1[/u] [b]p1.[/b] The fractal T-shirt for this year's Duke Math Meet is so complicated that the printer broke trying to print it. Thus, we devised a method for manually assembling each shirt - starting with the full-size 'base' shirt, we paste a smaller shirt on top of it. And then we paste an even smaller shirt on top of that one. And so on, infinitely many times. (As you can imagine, it took a while to make all the shirts.) The completed T-shirt consists of the original 'base' shirt along with all of the shirts we pasted onto it. Now suppose the base shirt requires $2011$ $cm^2$ of fabric to make, and that each pasted-on shirt requires $4/5$ as much fabric as the previous one did. How many $cm^2$ of fabric in total are required to make one complete shirt? [b]p2.[/b] A dog is allowed to roam a yard while attached to a $60$-meter leash. The leash is anchored to a $40$-meter by $20$-meter rectangular house at the midpoint of one of the long sides of the house. What is the total area of the yard that the dog can roam? [b]p3.[/b] $10$ birds are chirping on a telephone wire. Bird $1$ chirps once per second, bird $2$ chirps once every $2$ seconds, and so on through bird $10$, which chirps every $10$ seconds. At time $t = 0$, each bird chirps. Define $f(t)$ to be the number of birds that chirp during the $t^{th}$ second. What is the smallest $t > 0$ such that $f(t)$ and $f(t + 1)$ are both at least $4$? [u]Round 2[/u] [b]p4.[/b] The answer to this problem is $3$ times the answer to problem 5 minus $4$ times the answer to problem 6 plus $1$. [b]p5.[/b] The answer to this problem is the answer to problem 4 minus $4$ times the answer to problem 6 minus $1$. [b]p6.[/b] The answer to this problem is the answer to problem 4 minus $2$ times the answer to problem 5. [u]Round 3[/u] [b]p7.[/b] Vivek and Daniel are playing a game. The game ends when one person wins $5$ rounds. The probability that either wins the first round is $1/2$. In each subsequent round the players have a probability of winning equal to the fraction of games that the player has lost. What is the probability that Vivek wins in six rounds? [b]p8.[/b] What is the coefficient of $x^8y^7$ in $(1 + x^2 - 3xy + y^2)^{17}$? [b]p9.[/b] Let $U(k)$ be the set of complex numbers $z$ such that $z^k = 1$. How many distinct elements are in the union of $U(1),U(2),...,U(10)$? [u]Round 4[/u] [b]p10.[/b] Evaluate $29 {30 \choose 0}+28{30 \choose 1}+27{30 \choose 2}+...+0{30 \choose 29}-{30\choose 30}$. You may leave your answer in exponential format. [b]p11.[/b] What is the number of strings consisting of $2a$s, $3b$s and $4c$s such that $a$ is not immediately followed by $b$, $b$ is not immediately followed by $c$ and $c$ is not immediately followed by $a$? [b]p12.[/b] Compute $\left(\sqrt3 + \tan (1^o)\right)\left(\sqrt3 + \tan (2^o)\right)...\left(\sqrt3 + \tan (29^o)\right)$. [u]Round 5[/u] [b]p13.[/b] Three massless legs are randomly nailed to the perimeter of a massive circular wooden table with uniform density. What is the probability that the table will not fall over when it is set on its legs? [b]p14.[/b] Compute $$\sum^{2011}_{n=1}\frac{n + 4}{n(n + 1)(n + 2)(n + 3)}$$ [b]p15.[/b] Find a polynomial in two variables with integer coefficients whose range is the positive real numbers. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1986 IMO Longlists, 78

If $T$ and $T_1$ are two triangles with angles $x, y, z$ and $x_1, y_1, z_1$, respectively, prove the inequality \[\frac{\cos x_1}{\sin x}+\frac{\cos y_1}{\sin y}+\frac{\cos z_1}{\sin z} \leq \cot x+\cot y+\cot z.\]

2020 Miklós Schweitzer, 4

Consider horizontal and vertical segments in the plane that may intersect each other. Let $n$ denote their total number. Suppose that we have $m$ curves starting from the origin that are pairwise disjoint except for their endpoints. Assume that each curve intersects exactly two of the segments, a different pair for each curve. Prove that $m=O(n)$.

2017 Puerto Rico Team Selection Test, 6

Miguel has a square piece of paper $ABCD$ that he folded along a line $EF$, $E$ on $AB$, and $F$ on $CD$. This fold sent $A$ to point $A'$ on $BC$, distinct from $B$ and $C$. Also, it brought $D$ to point $D'$. $G$ is the intersection of $A'D'$ and $DC$. Prove that the inradius of $GCA'$ is equal to the sum of the inradius of $D'GF$ and $A'BE$.

2020 Thailand TST, 2

Tags: geometry
Let $ABCDE$ be a convex pentagon with $CD= DE$ and $\angle EDC \ne 2 \cdot \angle ADB$. Suppose that a point $P$ is located in the interior of the pentagon such that $AP =AE$ and $BP= BC$. Prove that $P$ lies on the diagonal $CE$ if and only if area $(BCD)$ + area $(ADE)$ = area $(ABD)$ + area $(ABP)$. (Hungary)

2018-IMOC, G5

Suppose $I,O,H$ are incenter, circumcenter, orthocenter of $\vartriangle ABC$ respectively. Let $D = AI \cap BC$,$E = BI \cap CA$, $F = CI \cap AB$ and $X$ be the orthocenter of $\vartriangle DEF$. Prove that $IX \parallel OH$.

Geometry Mathley 2011-12, 3.3

A triangle $ABC$ is inscribed in circle $(O)$. $P1, P2$ are two points in the plane of the triangle. $P_1A, P_1B, P_1C$ meet $(O)$ again at $A_1,B_1,C_1$ . $P_2A, P_2B, P_2C$ meet $(O)$ again at $A_2,B_2,C_2$. a) $A_1A_2, B_1B_2, C_1C_2$ intersect $BC,CA,AB$ at $A_3,B_3,C_3$. Prove that three points $A_3,B_3,C_3$ are collinear. b) $P$ is a point on the line $P_1P_2. A_1P,B_1P,C_1P$ meet (O) again at $A_4,B_4,C_4$. Prove that three lines $A_2A_4,B_2B_4,C_2C_4$ are concurrent. Trần Quang Hùng

2024 India Regional Mathematical Olympiad, 3

Let $ABC$ be an acute triangle with $AB = AC$. Let $D$ be the point on $BC$ such that $AD$ is perpendicular to $BC$. Let $O,H,G$ be the circumcenter, orthocenter and centroid of triangle $ABC$ respectively. Suppose that $2 \cdot OD = 23 \cdot HD$. Prove that $G$ lies on the incircle of triangle $ABC$.

1957 Moscow Mathematical Olympiad, 361

The lengths, $a$ and $b$, of two sides of a triangle are known. (a) What length should the third side be, in order for the largest angle of the triangle to be of the least possible value? (b) What length should the third side be in order for the smallest angle of the triangle to be of the greatest possible value?

2004 India IMO Training Camp, 1

Prove that in any triangle $ABC$, \[ 0 < \cot { \left( \frac{A}{4} \right)} - \tan{ \left( \frac{B}{4} \right) } - \tan{ \left( \frac{C}{4} \right) } - 1 < 2 \cot { \left( \frac{A}{2} \right) }. \]

2001 JBMO ShortLists, 12

Consider the triangle $ABC$ with $\angle A= 90^{\circ}$ and $\angle B \not= \angle C$. A circle $\mathcal{C}(O,R)$ passes through $B$ and $C$ and intersects the sides $AB$ and $AC$ at $D$ and $E$, respectively. Let $S$ be the foot of the perpendicular from $A$ to $BC$ and let $K$ be the intersection point of $AS$ with the segment $DE$. If $M$ is the midpoint of $BC$, prove that $AKOM$ is a parallelogram.

2024 Bulgaria MO Regional Round, 10.2

Tags: geometry
Given are two fixed lines that meet at a point $O$ and form an acute angle with measure $\alpha$. Let $P$ be a fixed point, internal for the angle. The points $M, N$ vary on the two lines (one point on each line) such that $\angle MPN=180^{\circ}-\alpha$ and $P$ is internal for $\triangle MON$. Show that the foot of the perpendicular from $P$ to $MN$ lies on a fixed circle.