This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

Gheorghe Țițeica 2025, P3

Out of all the nondegenerate triangles with positive integer sides and perimeter $100$, find the one with the smallest area.

Ukraine Correspondence MO - geometry, 2010.11

Let $ABC$ be an acute-angled triangle in which $\angle BAC = 60^o$ and $AB> AC$. Let $H$ and $I$ denote the points of intersection of the altitudes and angle bisectors of this triangle, respectively. Find the ratio $\angle ABC: \angle AHI$.

1978 Bundeswettbewerb Mathematik, 4

In a triangle $ABC$, the points $A_1, B_1, C_1$ are symmetric to $A, B,C$ with respect to $B,C, A$, respectively. Given the points $A_1, B_1,C_1$ reconstruct the triangle $ABC$.

Ukraine Correspondence MO - geometry, 2018.9

Let $ABC$ be an acute-angled triangle in which $AB <AC$. On the side $BC$ mark a point $D$ such that $AD = AB$, and on the side $AB$ mark a point $E$ such that the segment $DE$ passes through the orthocenter of triangle $ABC$. Prove that the center of the circumcircle of triangle $ADE$ lies on the segment $AC$.

Estonia Open Junior - geometry, 2013.1.4

Inside a circle $c$ with the center $O$ there are two circles $c_1$ and $c_2$ which go through $O$ and are tangent to the circle $c$ at points $A$ and $B$ crespectively. Prove that the circles $c_1$ and $c_2$ have a common point which lies in the segment $AB$.

2021 Oral Moscow Geometry Olympiad, 6

Point $M$ is a midpoint of side $BC$ of a triangle $ABC$ and $H$ is the orthocenter of $ABC$. $MH$ intersects the $A$-angle bisector at $Q$. Points $X$ and $Y$ are the projections of $Q$ on sides $AB$ and $AC$. Prove that $XY$ passes through $H$.

2016 AMC 10, 18

Each vertex of a cube is to be labeled with an integer $1$ through $8$, with each integer being used once, in such a way that the sum of the four numbers on the vertices of a face is the same for each face. Arrangements that can be obtained from each other through rotations of the cube are considered to be the same. How many different arrangements are possible? $\textbf{(A) } 1\qquad\textbf{(B) } 3\qquad\textbf{(C) }6 \qquad\textbf{(D) }12 \qquad\textbf{(E) }24$

2016 Junior Regional Olympiad - FBH, 5

$605$ spheres of same radius are divided in two parts. From one part, upright "pyramid" is made with square base. From the other part, upright "pyramid" is made with equilateral triangle base. Both "pyramids" are put together from equal numbers of sphere rows. Find number of spheres in every "pyramid"

2012 India Regional Mathematical Olympiad, 1

Tags: geometry
Let $ABCD$ be a unit square. Draw a quadrant of the a circle with $A$ as centre and $B,D$ as end points of the arc. Similarly, draw a quadrant of a circle with $B$ as centre and $A,C$ as end points of the arc. Inscribe a circle $ \Gamma$ touching arcs $AC$ and $BD$ both externally and also touching the side $CD$. Find the radius of $ \Gamma$.

2022 Nigerian Senior MO Round 2, Problem 2

Let $G$ be the centroid of $\triangle ABC $ and let $D, E $ and $F$ be the midpoints of the line segments $BC, CA $ and $AB$ respectively. Suppose the circumcircle of $\triangle ABC $ meets $AD $ again at $X$, the circumcircle of $\triangle DEF $ meets $BE$ again at $Y$ and the circumcircle of $\triangle DEF $ meets $CF$ again at $Z$. Show that $G, X, Y $ and $Z$ are concyclic.

2009 China Northern MO, 6

Tags: geometry , fixed , area
Given a minor sector $AOB$ (Here minor means that $ \angle AOB <90$). $O$ is the centre , chose a point $C$ on arc $AB$ ,Let $P$ be a point on segment $OC$ , join $AP$ , $BP$ , draw a line through $B$ parallel to $AP$ , the line meet $OC$ at point $Q$ ,join $AQ$ . Prove that the area of polygon $AQPBO$ does not change when points $P,C$ move . [img]https://cdn.artofproblemsolving.com/attachments/3/e/4bdd3a20fe1df3fce0719463b55ef93e8b5d7b.png[/img]

2023 Middle European Mathematical Olympiad, 6

Tags: geometry
Let $ABC$ be an acute triangle with $AB < AC$. Let $J$ be the center of the $A$-excircle of $ABC$. Let $D$ be the projection of $J$ on line $BC$. The internal bisectors of angles $BDJ$ and $JDC$ intersectlines $BJ$ and $JC$ at $X$ and $Y$, respectively. Segments $XY$ and $JD$ intersect at $P$. Let $Q$ be the projection of $A$ on line $BC$. Prove that the internal angle bisector of $QAP$ is perpendicular to line $XY$. [i]Proposed by Dominik Burek, Poland[/i]

1948 Moscow Mathematical Olympiad, 152

a) Two legs of an angle $\alpha$ on a plane are mirrors. Prove that after several reflections in the mirrors any ray leaves in the direction opposite the one from which it came if and only if $\alpha = \frac{90^o}{n}$ for an integer $n$. Find the number of reflections. b) Given three planar mirrors in space forming an octant (trihedral angle with right planar angles), prove that any ray of light coming into this mirrored octant leaves it, after several reflections in the mirrors, in the direction opposite to the one from which it came. Find the number of reflections.

2000 China Team Selection Test, 1

Let $ABC$ be a triangle such that $AB = AC$. Let $D,E$ be points on $AB,AC$ respectively such that $DE = AC$. Let $DE$ meet the circumcircle of triangle $ABC$ at point $T$. Let $P$ be a point on $AT$. Prove that $PD + PE = AT$ if and only if $P$ lies on the circumcircle of triangle $ADE$.

2006 Iran Team Selection Test, 5

Let $ABC$ be an acute angle triangle. Suppose that $D,E,F$ are the feet of perpendicluar lines from $A,B,C$ to $BC,CA,AB$. Let $P,Q,R$ be the feet of perpendicular lines from $A,B,C$ to $EF,FD,DE$. Prove that \[ 2(PQ+QR+RP)\geq DE+EF+FD \]

1998 Turkey MO (2nd round), 2

Variable points $M$ and $N$ are considered on the arms $\left[ OX \right.$ and $\left[ OY \right.$ , respectively, of an angle $XOY$ so that $\left| OM \right|+\left| ON \right|$ is constant. Determine the locus of the midpoint of $\left[ MN \right]$.

2005 Taiwan TST Round 1, 2

Show that for any tetrahedron, the condition that opposite edges have the same length is equivalent to the condition that the segment drawn between the midpoints of any two opposite edges is perpendicular to the two edges.

2009 Olympic Revenge, 3

Tags: geometry , incenter
Let $ABC$ to be a triangle with incenter $I$. $\omega_{A}$, $\omega_{B}$ and $\omega_{C}$ are the incircles of the triangles $BIC$, $CIA$ and $AIB$, repectively. After all, $T$ is the tangent point between $\omega_{A}$ and $BC$. Prove that the other internal common tangent to $\omega_{B}$ and $\omega_{C}$ passes through the point $T$.

2008 Sharygin Geometry Olympiad, 3

Tags: geometry
(D.Shnol) Two opposite angles of a convex quadrilateral with perpendicular diagonals are equal. Prove that a circle can be inscribed in this quadrilateral.

2018 Balkan MO Shortlist, G2

Let $ABC$ be a triangle inscribed in circle $\Gamma$ with center $O$. Let $H$ be the orthocenter of triangle $ABC$ and let $K$ be the midpoint of $OH$. Tangent of $\Gamma$ at $B$ intersects the perpendicular bisector of $AC$ at $L$. Tangent of $\Gamma$ at $C$ intersects the perpendicular bisector of $AB$ at $M$. Prove that $AK$ and $LM$ are perpendicular. by Michael Sarantis, Greece

1959 AMC 12/AHSME, 26

The base of an isosceles triangle is $\sqrt 2$. The medians to the leg intersect each other at right angles. The area of the triangle is: $ \textbf{(A)}\ 1.5 \qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 2.5\qquad\textbf{(D)}\ 3.5\qquad\textbf{(E)}\ 4 $

2023 ELMO Shortlist, G2

Tags: geometry
Let \(ABC\) be an acute scalene triangle with orthocenter \(H\). Line \(BH\) intersects \(\overline{AC}\) at \(E\) and line \(CH\) intersects \(\overline{AB}\) at \(F\). Let \(X\) be the foot of the perpendicular from \(H\) to the line through \(A\) parallel to \(\overline{EF}\). Point \(B_1\) lies on line \(XF\) such that \(\overline{BB_1}\) is parallel to \(\overline{AC}\), and point \(C_1\) lies on line \(XE\) such that \(\overline{CC_1}\) is parallel to \(\overline{AB}\). Prove that points \(B\), \(C\), \(B_1\), \(C_1\) are concyclic. [i]Proposed by Luke Robitaille[/i]

2003 All-Russian Olympiad, 3

In a triangle $ABC, O$ is the circumcenter and $I$ the incenter. The excircle $\omega_a$ touches rays $AB,AC$ and side $BC$ at $K,M,N$, respectively. Prove that if the midpoint $P$ of $KM$ lies on the circumcircle of $\triangle ABC$, then points $O,N, I$ lie on a line.

2020 Iranian Geometry Olympiad, 4

Convex circumscribed quadrilateral $ABCD$ with its incenter $I$ is given such that its incircle is tangent to $\overline{AD},\overline{DC},\overline{CB},$ and $\overline{BA}$ at $K,L,M,$ and $N$. Lines $\overline{AD}$ and $\overline{BC}$ meet at $E$ and lines $\overline{AB}$ and $\overline{CD}$ meet at $F$. Let $\overline{KM}$ intersects $\overline{AB}$ and $\overline{CD}$ at $X,Y$, respectively. Let $\overline{LN}$ intersects $\overline{AD}$ and $\overline{BC}$ at $Z,T$, respectively. Prove that the circumcircle of triangle $\triangle XFY$ and the circle with diameter $EI$ are tangent if and only if the circumcircle of triangle $\triangle TEZ$ and the circle with diameter $FI$ are tangent. [i]Proposed by Mahdi Etesamifard[/i]

2006 AMC 12/AHSME, 22

A circle of radius $ r$ is concentric with and outside a regular hexagon of side length 2. The probability that three entire sides of hexagon are visible from a randomly chosen point on the circle is 1/2. What is $ r$? $ \textbf{(A) } 2\sqrt {2} \plus{} 2\sqrt {3} \qquad \textbf{(B) } 3\sqrt {3} \plus{} \sqrt {2} \qquad \textbf{(C) } 2\sqrt {6} \plus{} \sqrt {3} \qquad \textbf{(D) } 3\sqrt {2} \plus{} \sqrt {6}\\ \textbf{(E) } 6\sqrt {2} \minus{} \sqrt {3}$