This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2004 Polish MO Finals, 1

A point $ D$ is taken on the side $ AB$ of a triangle $ ABC$. Two circles passing through $ D$ and touching $ AC$ and $ BC$ at $ A$ and $ B$ respectively intersect again at point $ E$. Let $ F$ be the point symmetric to $ C$ with respect to the perpendicular bisector of $ AB$. Prove that the points $ D,E,F$ lie on a line.

2025 Euler Olympiad, Round 2, 2

Points $A$, $B$, $C$, and $D$ lie on a line in that order, and points $E$ and $F$ are located outside the line such that $EA=EB$, $FC=FD$ and $EF \parallel AD$. Let the circumcircles of triangles $ABF$ and $CDE$ intersect at points $P$ and $Q$, and the circumcircles of triangles $ACF$ and $BDE$ intersect at points $M$ and $N$. Prove that the lines $PQ$ and $MN$ pass through the midpoint of segment $EF$. [i] Proposed by Giorgi Arabidze, Georgia[/i]

Durer Math Competition CD 1st Round - geometry, 2012.C5

In a triangle, the line between the center of the inscribed circle and the center of gravity is parallel to one of the sides. Prove that the sidelengths form an arithmetic sequence.

1999 VJIMC, Problem 1

Find the minimal $k$ such that every set of $k$ different lines in $\mathbb R^3$ contains either $3$ mutually parallel lines or $3$ mutually intersecting lines or $3$ mutually skew lines.

1974 IMO Longlists, 18

Let $A_r,B_r, C_r$ be points on the circumference of a given circle $S$. From the triangle $A_rB_rC_r$, called $\Delta_r$, the triangle $\Delta_{r+1}$ is obtained by constructing the points $A_{r+1},B_{r+1}, C_{r+1} $on $S$ such that $A_{r+1}A_r$ is parallel to $B_rC_r$, $B_{r+1}B_r$ is parallel to $C_rA_r$, and $C_{r+1}C_r$ is parallel to $A_rB_r$. Each angle of $\Delta_1$ is an integer number of degrees and those integers are not multiples of $45$. Prove that at least two of the triangles $\Delta_1,\Delta_2, \ldots ,\Delta_{15}$ are congruent.

2002 All-Russian Olympiad Regional Round, 11.7

Given a convex quadrilateral $ABCD$.Let $\ell_A,\ell_B,\ell_C,\ell_D$ be exterior angle bisectors of quadrilateral $ABCD$. Let $\ell_A \cap \ell_B=K,\ell_B \cap \ell_C=L,\ell_C \cap \ell_D=M,\ell_D \cap \ell_A=N$.Prove that if circumcircles of triangles $ABK$ and $CDM$ be externally tangent to each other then circumcircles of the triangles $BCL$ and $DAN$ are externally tangent to each other.(L.Emelyanov)

1990 IMO Longlists, 7

Let $S$ be the incenter of triangle $ABC$. $A_1, B_1, C_1$ are the intersections of $AS, BS, CS$ with the circumcircle of triangle $ABC$ respectively. Prove that $SA_1 + SB_1 + SC_1 \geq SA + SB + SC.$

2025 Kyiv City MO Round 1, Problem 3

Tags: tangent , geometry
Point \( H \) is the orthocenter of the acute triangle \( ABC \), and \( AD \) is its altitude. Tangents are drawn from points \( B \) and \( C \) to the circle with center \( A \) and radius \( AD \), which do not coincide with the line \( BC \). These tangents intersect at point \( P \). Prove that the radius of the incircle of \( \triangle BCP \) is equal to \( HD \). [i]Proposed by Danylo Khilko[/i]

1966 IMO Shortlist, 7

For which arrangements of two infinite circular cylinders does their intersection lie in a plane?

2023 China Northern MO, 1

As shown in the figure, $AB$ is the diameter of circle $\odot O$, and chords $AC$ and $BD$ intersect at point $E$, $EF\perp AB$ intersects at point $F$, and $FC$ intersects $BD$ at point $G$. Point $M$ lies on $AB$ such that $MD=MG$ . Prove that points $F$, $M$, $D$, $G$ lies on a circle. [img]https://cdn.artofproblemsolving.com/attachments/2/3/614ef5b9e8c8b16a29b8b960290ef9d7297529.jpg[/img]

1999 Akdeniz University MO, 4

Placing $n \in {\mathbb N}$ circles with radius $1$ $unit$ inside a square with side $100$ $unit$ such that, whichever line segment with lenght $10$ $unit$ intersect at least one circle. Prove that $$n \geq 416$$

1989 Bulgaria National Olympiad, Problem 5

Prove that the perpendiculars, drawn from the midpoints of the edges of the base of a given tetrahedron to the opposite lateral edges, have a common point if and only if the circumcenter of the tetrahedron, the centroid of the base, and the top vertex of the tetrahedron are collinear.

1988 Mexico National Olympiad, 8

Compute the volume of a regular octahedron circumscribed about a sphere of radius $1$.

1990 China Team Selection Test, 1

Given a triangle $ ABC$ with angle $ C \geq 60^{\circ}$. Prove that: $ \left(a \plus{} b\right) \cdot \left(\frac {1}{a} \plus{} \frac {1}{b} \plus{} \frac {1}{c} \right) \geq 4 \plus{} \frac {1}{\sin\left(\frac {C}{2}\right)}.$

2000 Harvard-MIT Mathematics Tournament, 36

If, in a triangle of sides $a, b, c$, the incircle has radius $\frac{b+c-a}{2}$, what is the magnitude of $\angle A$?

2008 Saint Petersburg Mathematical Olympiad, 6

A diagonal of a 100-gon is called good if it divides the 100-gon into two polygons each with an odd number of sides. A 100-gon was split into triangles with non-intersecting diagonals, exactly 49 of which are good. The triangles are colored into two colors such that no two triangles that border each other are colored with the same color. Prove that there is the same number of triangles colored with one color as with the other. Fresh translation; slightly reworded.

2024 Vietnam National Olympiad, 3

Tags: geometry
Let $ABC$ be an acute triangle with circumcenter $O$. Let $A'$ be the center of the circle passing through $C$ and tangent to $AB$ at $A$, let $B'$ be the center of the circle passing through $A$ and tangent to $BC$ at $B$, let $C'$ be the center of the circle passing through $B$ and tangent to $CA$ at $C$. a) Prove that the area of triangle $A'B'C'$ is not less than the area of triangle $ABC$. b) Let $X, Y, Z$ be the projections of $O$ onto lines $A'B', B'C', C'A'$. Given that the circumcircle of triangle $XYZ$ intersects lines $A'B', B'C', C'A'$ again at $X', Y', Z'$ ($X' \neq X, Y' \neq Y, Z' \neq Z$), prove that lines $AX', BY', CZ'$ are concurrent.

2017 Iran Team Selection Test, 2

Tags: geometry
Let $P$ be a point in the interior of quadrilateral $ABCD$ such that: $$\angle BPC=2\angle BAC \ \ ,\ \ \angle PCA = \angle PAD \ \ ,\ \ \angle PDA=\angle PAC$$ Prove that: $$\angle PBD= \left | \angle BCA - \angle PCA \right |$$ [i]Proposed by Ali Zamani[/i]

Estonia Open Senior - geometry, 2000.2.4

The diagonals of the square $ABCD$ intersect at $P$ and the midpoint of the side $AB$ is $E$. Segment $ED$ intersects the diagonal $AC$ at point $F$ and segment $EC$ intersects the diagonal $BD$ at $G$. Inside the quadrilateral $EFPG$, draw a circle of radius $r$ tangent to all the sides of this quadrilateral. Prove that $r = | EF | - | FP |$.

1968 Poland - Second Round, 5

The tetrahedrons $ ABCD $ and $ A_1B_1C_1D_1 $ are situated so that the midpoints of the segments $ AA_1 $, $ BB_1 $, $ CC_1 $, $ DD_1 $ are the centroids of the triangles $BCD$, $ ACD $, $ A B D $ and $ ABC $, respectively. What is the ratio of the volumes of these tetrahedrons?

2014 USAMTS Problems, 1:

The net of 20 triangles shown below can be folded to form a regular icosahedron. Inside each of the triangular faces, write a number from 1 to 20 with each number used exactly once. Any pair of numbers that are consecutive must be written on faces sharing an edge in the folded icosahedron, and additionally, 1 and 20 must also be on faces sharing an edge. Some numbers have been given to you. (No proof is necessary.) [asy] unitsize(1cm); pair c(int a, int b){return (a-b/2,sqrt(3)*b/2);} draw(c(0,0)--c(0,1)--c(-1,1)--c(1,3)--c(1,1)--c(2,2)--c(3,2)--c(4,3)--c(4,2)--c(3,1)--c(2,1)--c(2,-1)--c(1,-1)--c(1,-2)--c(0,-3)--c(0,-2)--c(-1,-2)--c(1,0)--cycle); draw(c(0,0)--c(1,1)--c(0,1)--c(1,2)--c(0,2)--c(0,1),linetype("4 4")); draw(c(4,2)--c(3,2)--c(3,1),linetype("4 4")); draw(c(3,2)--c(1,0)--c(1,1)--c(2,1)--c(2,2),linetype("4 4")); draw(c(1,-2)--c(0,-2)--c(0,-1)--c(1,-1)--c(1,0)--c(2,0)--c(0,-2),linetype("4 4")); label("2",(c(0,2)+c(1,2))/2,S); label("15",(c(1,1)+c(2,1))/2,S); label("6",(c(0,1)+c(1,1))/2,N); label("14",(c(0,0)+c(1,0))/2,N);[/asy]

Kyiv City MO Seniors Round2 2010+ geometry, 2010.10.4

The points $A \ne B$ are given on the plane. The point $C$ moves along the plane in such a way that $\angle ACB = \alpha$ , where $\alpha$ is the fixed angle from the interval ($0^o, 180^o$). The circle inscribed in triangle $ABC$ has center the point $I$ and touches the sides $AB, BC, CA$ at points $D, E, F$ accordingly. Rays $AI$ and $BI$ intersect the line $EF$ at points $M$ and $N$, respectively. Show that: a) the segment $MN$ has a constant length, b) all circles circumscribed around triangle $DMN$ have a common point

2003 AMC 12-AHSME, 15

A regular octagon $ ABCDEFGH$ has an area of one square unit. What is the area of the rectangle $ ABEF$? [asy]unitsize(8mm); defaultpen(linewidth(.8pt)+fontsize(6pt)); pair C=dir(22.5), B=dir(67.5), A=dir(112.5), H=dir(157.5), G=dir(202.5), F=dir(247.5), E=dir(292.5), D=dir(337.5); draw(A--B--C--D--E--F--G--H--cycle); label("$A$",A,NNW); label("$B$",B,NNE); label("$C$",C,ENE); label("$D$",D,ESE); label("$E$",E,SSE); label("$F$",F,SSW); label("$G$",G,WSW); label("$H$",H,WNW);[/asy]$ \textbf{(A)}\ 1\minus{}\frac{\sqrt2}{2} \qquad \textbf{(B)}\ \frac{\sqrt2}{4} \qquad \textbf{(C)}\ \sqrt2\minus{}1 \qquad \textbf{(D)}\ \frac12 \qquad \textbf{(E)}\ \frac{1\plus{}\sqrt2}{4}$

2021 Saudi Arabia Training Tests, 2

Tags: geometry
Let $ABC$ be an acute, non isosceles triangle with the orthocenter $H$, circumcenter $O$ and $AD$ is the diameter of $(O)$. Suppose that the circle $(AHD)$ meets the lines $AB, AC$ at $F$, respectively. Denote $J, K$ as orthocenter and nine- point center of $AEF$. Prove that $HJ \parallel BC$ and $KO = KH$.

2024 Chile National Olympiad., 3

Let \( AD \) and \( BE \) be altitudes of triangle \( \triangle ABC \) that meet at the orthocenter \( H \). The midpoints of segments \( AB \) and \( CH \) are \( X \) and \( Y \), respectively. Prove that the line \( XY \) is perpendicular to line \( DE \).