This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2007 QEDMO 4th, 2

Let $ ABCD$ be a trapezoid with $ BC\parallel AD$, and let $ O$ be the point of intersection of its diagonals $ AC$ and $ BD$. Prove that $ \left\vert ABCD\right\vert \equal{}\left( \sqrt{\left\vert BOC\right\vert }\plus{}\sqrt{\left\vert DOA\right\vert }\right) ^{2}$. [hide="Source of the problem"][i]Source of the problem:[/i] exercise 8 in: V. Alekseev, V. Galkin, V. Panferov, V. Tarasov, [i]Zadachi o trapezijah[/i], Kvant 6/2000, pages 37-4.[/hide]

2025 Poland - First Round, 10

Tags: geometry
An acute triangle $ABC$ is given, in which $AB<AC$. Let $\Omega$ be the circumcircle of $ABC$. Points $M$ and $N$ are the midpoints of the longer arc $BC$ and shorter arc $BC$ of $\Omega$ respectively. Points $X\ne M$ and $Y\ne N$ lie on the line $AM$ and satisfy $BX=BM=CM=CY$. Let $E$ be a point on $AC$ such that $BE$ and $AC$ are perpendicular. Prove that $\angle FNX=\angle YNE$.

2012 Turkmenistan National Math Olympiad, 8

Let $ABC$ be a triangle inscribed in a circle of radius $1$. If the triangle's sides are integer numbers, then find that triangle's sides.

2021 Novosibirsk Oral Olympiad in Geometry, 5

Tags: pentagon , angle , geometry
The pentagon $ABCDE$ is inscribed in the circle. Line segments $AC$ and $BD$ intersect at point $K$. Line segment $CE$ touches the circumcircle of triangle $ABK$ at point $N$. Find the angle $CNK$ if $\angle ECD = 40^o.$

2015 Saint Petersburg Mathematical Olympiad, 4

$ABCD$ is convex quadrilateral. Circumcircle of $ABC$ intersect $AD$ and $DC$ at points $P$ and $Q$. Circumcircle of $ADC$ intersect $AB$ and $BC$ at points $S$ and $R$. Prove that if $PQRS$ is parallelogram then $ABCD$ is parallelogram

2001 Moldova National Olympiad, Problem 4

Tags: triangle , geometry
In a triangle $ABC$, $BC=a$, $AC=b$, $\angle B=\beta$ and $\angle C=\gamma$. Prove that the bisector of the angle at $A$ is equal to the altitude from $B$ if and only if $b=a\cos\frac{\beta-\gamma}2$.

2014 Belarus Team Selection Test, 1

Let $AA_1, BB_1$ be the altitudes of an acute non-isosceles triangle $ABC$. Circumference of the triangles $ABC$ meets that of the triangle $A_1B_1C$ at point $N$ (different from $C$). Let $M$ be the midpoint of $AB$ and $K$ be the intersection point of $CN$ and $AB$. Prove that the line of centers the circumferences of the triangles $ABC$ and $KMC$ is parallel to the line $AB$. (I. Kachan)

2016 PUMaC Geometry A, 2

Tags: geometry
Let $ABCD$ be a square with side length $8$. Let $M$ be the midpoint of $BC$ and let $\omega$ be the circle passing through $M, A$, and $D$. Let $O$ be the center of $\omega, X$ be the intersection point (besides A) of $\omega$ with $AB$, and $Y$ be the intersection point of $OX$ and $AM$. If the length of $OY$ can be written in simplest form as $\frac{m}{n}$ , compute $m + n$.

2015 AIME Problems, 11

The circumcircle of acute $\triangle ABC$ has center $O$. The line passing through point $O$ perpendicular to $\overline{OB}$ intersects lines $AB$ and $BC$ at $P$ and $Q$, respectively. Also $AB=5$, $BC=4$, $BQ=4.5$, and $BP=\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

1976 Bulgaria National Olympiad, Problem 1

In a circle with a radius of $1$ is an inscribed hexagon (convex). Prove that if the multiple of all diagonals that connects vertices of neighboring sides is equal to $27$ then all angles of hexagon are equals. [i]V. Petkov, I. Tonov[/i]

2010 Sharygin Geometry Olympiad, 4

Circles $\omega_1$ and $\omega_2$ inscribed into equal angles $X_1OY$ and $Y OX_2$ touch lines $OX_1$ and $OX_2$ at points $A_1$ and $A_2$ respectively. Also they touch $OY$ at points $B_1$ and $B_2$. Let $C_1$ be the second common point of $A_1B_2$ and $\omega_1, C_2$ be the second common point of $A_2B_1$ and $\omega_2$. Prove that $C_1C_2$ is the common tangent of two circles.

2015 India IMO Training Camp, 1

Let $ABC$ be a triangle in which $CA>BC>AB$. Let $H$ be its orthocentre and $O$ its circumcentre. Let $D$ and $E$ be respectively the midpoints of the arc $AB$ not containing $C$ and arc $AC$ not containing $B$. Let $D'$ and $E'$ be respectively the reflections of $D$ in $AB$ and $E$ in $AC$. Prove that $O, H, D', E'$ lie on a circle if and only if $A, D', E'$ are collinear.

Novosibirsk Oral Geo Oly IX, 2022.4

A point $D$ is marked on the side $AC$ of triangle $ABC$. The circumscribed circle of triangle $ABD$ passes through the center of the inscribed circle of triangle $BCD$. Find $\angle ACB$ if $\angle ABC = 40^o$.

2022 AMC 12/AHSME, 25

A circle with integer radius $r$ is centered at $(r, r)$. Distinct line segments of length $c_i$ connect points $(0, a_i)$ to $(b_i, 0)$ for $1 \le i \le 14$ and are tangent to the circle, where $a_i$, $b_i$, and $c_i$ are all positive integers and $c_1 \le c_2 \le \cdots \le c_{14}$. What is the ratio $\frac{c_{14}}{c_1}$ for the least possible value of $r$? $\textbf{(A)} ~\frac{21}{5} \qquad\textbf{(B)} ~\frac{85}{13} \qquad\textbf{(C)} ~7 \qquad\textbf{(D)} ~\frac{39}{5} \qquad\textbf{(E)} ~17 $

2017 Korea Junior Math Olympiad, 6

Let triangle $ABC$ be an acute scalene triangle, and denote $D,E,F$ by the midpoints of $BC,CA,AB$, respectively. Let the circumcircle of $DEF$ be $O_1$, and its center be $N$. Let the circumcircle of $BCN$ be $O_2$. $O_1$ and $O_2$ meet at two points $P, Q$. $O_2$ meets $AB$ at point $K(\neq B)$ and meets $AC$ at point $L(\neq C)$. Show that the three lines $EF,PQ,KL$ are concurrent.

2021 HMNT, 3

Tags: geometry
Let $ABCD$ be a unit square. A circle with radius $\frac{32}{49}$ passes through point $D$ and is tangent to side $AB$ at point $E$. Then $DE = \frac{m}{n}$ , where $m$, $n$ are positive integers and gcd $(m, n) = 1$. Find $100m + n$.

2017 Hanoi Open Mathematics Competitions, 14

Given trapezoid $ABCD$ with bases $AB \parallel CD$ ($AB < CD$). Let $O$ be the intersection of $AC$ and $BD$. Two straight lines from $D$ and $C$ are perpendicular to $AC$ and $BD$ intersect at $E$ , i.e. $CE \perp BD$ and $DE \perp AC$ . By analogy, $AF \perp BD$ and $BF \perp AC$ . Are three points $E , O, F$ located on the same line?

2013 Stanford Mathematics Tournament, 2

In unit square $ABCD$, diagonals $\overline{AC}$ and $\overline{BD}$ intersect at $E$. Let $M$ be the midpoint of $\overline{CD}$, with $\overline{AM}$ intersecting $\overline{BD}$ at $F$ and $\overline{BM}$ intersecting $\overline{AC}$ at $G$. Find the area of quadrilateral $MFEG$.

2008 AIME Problems, 5

A right circular cone has base radius $ r$ and height $ h$. The cone lies on its side on a flat table. As the cone rolls on the surface of the table without slipping, the point where the cone's base meets the table traces a circular arc centered at the point where the vertex touches the table. The cone first returns to its original position on the table after making $ 17$ complete rotations. The value of $ h/r$ can be written in the form $ m\sqrt {n}$, where $ m$ and $ n$ are positive integers and $ n$ is not divisible by the square of any prime. Find $ m \plus{} n$.

2010 Today's Calculation Of Integral, 559

In $ xyz$ space, consider two points $ P(1,\ 0,\ 1),\ Q(\minus{}1,\ 1,\ 0).$ Let $ S$ be the surface generated by rotation the line segment $ PQ$ about $ x$ axis. Answer the following questions. (1) Find the volume of the solid bounded by the surface $ S$ and two planes $ x\equal{}1$ and $ x\equal{}\minus{}1$. (2) Find the cross-section of the solid in (1) by the plane $ y\equal{}0$ to sketch the figure on the palne $ y\equal{}0$. (3) Evaluate the definite integral $ \int_0^1 \sqrt{t^2\plus{}1}\ dt$ by substitution $ t\equal{}\frac{e^s\minus{}e^{\minus{}s}}{2}$. Then use this to find the area of (2).

2004 Harvard-MIT Mathematics Tournament, 7

Tags: geometry
Yet another trapezoid $ABCD$ has $AD$ parallel to $BC$. $AC$ and $BD$ intersect at $P$. If $[ADP]=[BCP] = 1/2$, find $[ADP]/[ABCD]$. (Here the notation $[P_1 ...P_n]$ denotes the area of the polygon $P_1 ...P_n$.)

2020 Costa Rica - Final Round, 2

Tags: circles , geometry , square
Consider a square $ABCD$. Let $M$ be the midpoint of segment $AB$, $\Gamma_1$ be the circle tangent to $\overline{AD}$, $\overline{AM}$ and $\overline{MC}$ with radius $r > 0$ and let $\Gamma_2$ be the circle tangent to $\overline{AD}$, $\overline{DC}$ and $\overline{MC}$ with radius $R > 0$. Prove that $R =\frac{2r}{r+1}$.

1985 IMO Longlists, 7

A convex quadrilateral is inscribed in a circle of radius $1$. Prove that the difference between its perimeter and the sum of the lengths of its diagonals is greater than zero and less than $2.$

2018 Brazil EGMO TST, 3

An equilateral triangle $ABC$ is inscribed in a circle $\Omega$ and has incircle $\omega$. Points $P$ and $Q$ are in segments $AC$ and $AB$, respectively, such that $PQ$ is tangent to $\omega$. The circle $\Omega_B$ has center $P$ and radius $PB$ and the circle $\Omega_C$ is defined similarly. Prove that $\Omega$, $\Omega_B$ and $\Omega_C$ have a common point.

Ukraine Correspondence MO - geometry, 2016.11

Inside the square $ABCD$ mark the point $P$, for which $\angle BAP = 30^o$ and $\angle BCP = 15^o$. The point $Q$ was chosen so that $APCQ$ is an isosceles trapezoid ($PC\parallel AQ$). Find the angles of the triangle $CAM$, where $M$ is the midpoint of $PQ$.