Found problems: 25757
1996 All-Russian Olympiad Regional Round, 10.6
Given triangle $A_0B_0C_0$. On the segment $A_0B_0$ points $A_1$, $A_2$, $...$, $A_n$, and on the segment $B_0C_0$ - points $C_1$, $C_2$, $...$, $Cn$ so that all segments $A_iC_{i+1}$ ($i = 0$, $1$, $...$,$n-1$) are parallel to each other and all segments $ C_iA_{i+1}$ ($i = 0$, $1$, $...$,$n-1$) are too. Segments $C_0A_1$, $A_1C_2$, $A_2C_1$ and $C_1A_0$ bound a certain parallelogram, segments $C_1A_2$, $A_2C_3$, $A_3C_2$ and $C_2A_1$ too, etc. Prove that the sum of the areas of all $n -1$ resulting parallelograms less than half the area of triangle $A_0B_0C_0$.
1975 Dutch Mathematical Olympiad, 5
Describe a method to convert any triangle into a rectangle with side 1 and area equal to the original triangle by dividing that triangle into finitely many subtriangles.
2016 Sharygin Geometry Olympiad, P2
Mark three nodes on a cellular paper so that the semiperimeter of the obtained triangle would be equal to the sum of its two smallest medians.
[i](Proposed by L.Emelyanov)[/i]
1973 IMO Longlists, 6
Let $P_i (x_i, y_i)$ (with $i = 1, 2, 3, 4, 5$) be five points with integer coordinates, no three collinear. Show that among all triangles with vertices at these points, at least three have integer areas.
2007 All-Russian Olympiad Regional Round, 10.4
Given a triangle $ ABC$. A circle passes through vertices $ B$ and $ C$ and intersects sides $ AB$ and $ AC$ at points $ D$ and $ E$, respectively. Segments $ CD$ and $ BE$ intersect at point $ O$. Denote the incenters of triangles $ ADE$ and $ ODE$ by $ M$ and $ N$, respectiely. Prove that the midpoint of the smaller arc $ DE$ lies on line $ MN$.
2022-23 IOQM India, 2
In a paralleogram $ABCD$ , a point $P$ on the segment $AB$ is taken such that $\frac{AP}{AB}=\frac{61}{2022}$\\
and a point $Q$ on the segment $AD$ is taken such that $\frac{AQ}{AD}=\frac{61}{2065}$.If $PQ$ intersects $AC$ at $T$, find $\frac{AC}{AT}$ to the nearest integer
Kyiv City MO Juniors 2003+ geometry, 2013.9.5
The two circles ${{w} _ {1}}, \, \, {{w} _ {2}}$ touch externally at the point $Q$. The common external tangent of these circles is tangent to ${{w} _ {1}}$ at the point $B$, $BA$ is the diameter of this circle. A tangent to the circle ${{w} _ {2}} $ is drawn through the point $A$, which touches this circle at the point $C$, such that the points $B$ and $C$ lie in one half-plane relative to the line $AQ$. Prove that the circle ${{w} _ {1}}$ bisects the segment $C $.
(Igor Nagel)
2015 Iran Team Selection Test, 6
$AH$ is the altitude of triangle $ABC$ and $H^\prime$ is the reflection of $H$ trough the midpoint of $BC$. If the tangent lines to the circumcircle of $ABC$ at $B$ and $C$, intersect each other at $X$ and the perpendicular line to $XH^\prime$ at $H^\prime$, intersects $AB$ and $AC$ at $Y$ and $Z$ respectively, prove that $\angle ZXC=\angle YXB$.
1966 IMO Longlists, 4
Given $5$ points in the plane, no three of them being collinear. Show that among these $5$ points, we can always find $4$ points forming a convex quadrilateral.
2022 Oral Moscow Geometry Olympiad, 4
An acute-angled non-isosceles triangle $ABC$ is drawn, a circumscribed circle and its center $O$ are drawn. The midpoint of side $AB$ is also marked. Using only a ruler (no divisions), construct the triangle's orthocenter by drawing no more than $6$ lines.
(Yu. Blinkov)
2004 All-Russian Olympiad, 3
A triangle $ T$ is contained inside a point-symmetrical polygon $ M.$ The triangle $ T'$ is the mirror image of the triangle $ T$ with the reflection at one point $ P$, which inside the triangle $ T$ lies. Prove that at least one of the vertices of the triangle $ T'$ lies in inside or on the boundary of the polygon $ M.$
2009 IMO Shortlist, 5
Let $P$ be a polygon that is convex and symmetric to some point $O$. Prove that for some parallelogram $R$ satisfying $P\subset R$ we have \[\frac{|R|}{|P|}\leq \sqrt 2\]
where $|R|$ and $|P|$ denote the area of the sets $R$ and $P$, respectively.
[i]Proposed by Witold Szczechla, Poland[/i]
2016 India IMO Training Camp, 1
Let $ABC$ be an acute triangle with circumcircle $\Gamma$. Let $A_1,B_1$ and $C_1$ be respectively the midpoints of the arcs $BAC,CBA$ and $ACB$ of $\Gamma$. Show that the inradius of triangle $A_1B_1C_1$ is not less than the inradius of triangle $ABC$.
2016 Tuymaada Olympiad, 3
Altitudes $AA_1$, $BB_1$, $CC_1$ of an acute triangle $ABC$ meet at $H$.
$A_0$, $B_0$, $C_0$ are the midpoints of $BC$, $CA$, $AB$ respectively. Points $A_2$, $B_2$, $C_2$ on the segments $AH$, $BH$, $HC_1$ respectively are such that $\angle A_0B_2A_2 = \angle B_0C_2B_2 = \angle C_0A_2C_2 =90^\circ$.
Prove that the lines $AC_2$, $BA_2$, $CB_2$ are concurrent.
LMT Accuracy Rounds, 2023 S7
In $\vartriangle ABC$, $AB = 13$, $BC = 14$, and $CA = 15$. Let $D$ be a point on $BC$ such that $BD = 6$. Let $E$ be a point on $CA$ such that $CE = 6$. Finally, let $F$ be a point on $AB$ such that $AF = 6$. Find the area of $\vartriangle DEF$.
II Soros Olympiad 1995 - 96 (Russia), 10.3
Each side of an acute triangle is multiplied by the cosine of the opposite angle.
a) Prove that a triangle can be formed from the resulting segments.
6) Find the radius of the circle circumscribed around the resulting triangle if the radius of the circle circumscribed around the original triangle is equal to $R$.
1998 Croatia National Olympiad, Problem 4
Let there be given a regular hexagon of side length $1$. Six circles with the sides of the hexagon as diameters are drawn. Find the area of the part of the hexagon lying outside all the circles.
2023 May Olympiad, 4
Matías has a rectangular sheet of paper $ABCD$, with $AB<AD$.Initially, he folds the sheet along a straight line $AE$, where $E$ is a point on the side $DC$ , so that vertex $D$ is located on side $BC$, as shown in the figure. Then folds the sheet again along a straight line $AF$, where $F$ is a point on side $BC$, so that vertex $B$ lies on the line $AE$; and finally folds the sheet along the line $EF$. Matías observed that the vertices $B$ and $C$ were located on the same point of segment $AE$ after making the folds. Calculate the measure of the angle $\angle DAE$.
[img]https://cdn.artofproblemsolving.com/attachments/0/9/b9ab717e1806c6503a9310ee923f20109da31a.png[/img]
2016 Iran Team Selection Test, 2
Let $ABC$ be an arbitrary triangle and $O$ is the circumcenter of $\triangle {ABC}$.Points $X,Y$ lie on $AB,AC$,respectively such that the reflection of $BC$ WRT $XY$ is tangent to circumcircle of $\triangle {AXY}$.Prove that the circumcircle of triangle $AXY$ is tangent to circumcircle of triangle $BOC$.
Denmark (Mohr) - geometry, 2002.4
In triangle $ABC$ we have $\angle C = 90^o$ and $AC = BC$. Furthermore $M$ is an interior pont in the triangle so that $MC = 1 , MA = 2$ and $MB =\sqrt2$. Determine $AB$
2014 ELMO Shortlist, 13
Let $ABC$ be a nondegenerate acute triangle with circumcircle $\omega$ and let its incircle $\gamma$ touch $AB, AC, BC$ at $X, Y, Z$ respectively. Let $XY$ hit arcs $AB, AC$ of $\omega$ at $M, N$ respectively, and let $P \neq X, Q \neq Y$ be the points on $\gamma$ such that $MP=MX, NQ=NY$. If $I$ is the center of $\gamma$, prove that $P, I, Q$ are collinear if and only if $\angle BAC=90^\circ$.
[i]Proposed by David Stoner[/i]
2022 Cyprus JBMO TST, 2
Let $ABCD$ be a square. Let $E, Z$ be points on the sides $AB, CD$ of the square respectively, such that $DE\parallel BZ$. Assume that the triangles $\triangle EAD, \triangle ZCB$ and the parallelogram $BEDZ$ have the same area.
If the distance between the parallel lines $DE$ and $BZ$ is equal to $1$, determine the area of the square.
2015 Junior Balkan Team Selection Tests - Romania, 4
Let $ABC$ be a triangle inscribed in circle $\omega$ and $P$ a point in its interior. The lines $AP,BP$ and $CP$ intersect circle $\omega$ for the second time at $D,E$ and $F,$ respectively. If $A',B',C'$ are the reflections of $A,B,C$ with respect to the lines $EF,FD,DE,$ respectively, prove that the triangles $ABC$ and $A'B'C'$ are similar.
2004 Germany Team Selection Test, 2
Let $ABC$ be a triangle and let $P$ be a point in its interior. Denote by $D$, $E$, $F$ the feet of the perpendiculars from $P$ to the lines $BC$, $CA$, $AB$, respectively. Suppose that \[AP^2 + PD^2 = BP^2 + PE^2 = CP^2 + PF^2.\] Denote by $I_A$, $I_B$, $I_C$ the excenters of the triangle $ABC$. Prove that $P$ is the circumcenter of the triangle $I_AI_BI_C$.
[i]Proposed by C.R. Pranesachar, India [/i]
2015 Saint Petersburg Mathematical Olympiad, 3
$ABCD$ - convex quadrilateral. Bisectors of angles $A$ and $D$ intersect in $K$, Bisectors of angles $B$ and $C$ intersect in $L$. Prove $$2KL \geq |AB-BC+CD-DA|$$