This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

1945 Moscow Mathematical Olympiad, 102

Segments connect vertices $A, B, C$ of $\vartriangle ABC$ with respective points $A_1, B_1, C_1$ on the opposite sides of the triangle. Prove that the midpoints of segments $AA_1, BB_1, CC_1$ do not belong to one straight line.

Estonia Open Junior - geometry, 2014.2.2

Tags: geometry , angle
In a scalene triangle one angle is exactly two times as big as another one and some angle in this triangle is $36^o$. Find all possibilities, how big the angles of this triangle can be.

II Soros Olympiad 1995 - 96 (Russia), 10.6

Tags: algebra , geometry
The sports plane flew along a diamond-shaped route in windy weather. He flew through the first three sides of the rhombus in $a $, $b$ and $c$ hours, respectively. How long did it take him to cover the fourth side of the diamond? (The speed of an aircraft is a vector equal to the sum of two vectors: the aircraft’s own speed and the wind speed. Wind speed is a constant vector. The aircraft’s own speed is a vector of constant length).

2019 BMT Spring, 7

Points $ A, B, C, D $ are vertices of an isosceles trapezoid, with $ \overline{AB} $ parallel to $ \overline{CD} $, $ AB = 1 $, $ CD = 2 $, and $ BC = 1 $. Point $ E $ is chosen uniformly and at random on $ \overline{CD} $, and let point $ F $ be the point on $ \overline{CD} $ such that $ EC = FD $. Let $ G $ denote the intersection of $ \overline{AE} $ and $ \overline{BF} $, not necessarily in the trapezoid. What is the probability that $ \angle AGB > 30^\circ $?

2000 Tournament Of Towns, 2

In triangle $ABC, AB = AC$. A line is drawn through $A$ parallel to $BC$. Outside triangle $ABC$, a circle is drawn tangent to this line, to the line $BC$, to $AB$ and to the incircle of $ABC$. If the radius of this circle is $1$ , determine the inradius of $ABC$. (RK Gordin)

2018 MOAA, 9

Tags: geometry , team
Quadrilateral $ABCD$ with $AC = 800$ is inscribed in a circle, and $E, W, X, Y, Z$ are the midpoints of segments $BD$, $AB$, $BC$, $CD$, $DA$, respectively. If the circumcenters of $EW Z$ and $EXY$ are $O_1$ and $O_2$, respectively, determine $O_1O_2$.

May Olympiad L2 - geometry, 2011.3

In a right triangle rectangle $ABC$ such that $AB = AC$, $M$ is the midpoint of $BC$. Let $P$ be a point on the perpendicular bisector of $AC$, lying in the semi-plane determined by $BC$ that does not contain $A$. Lines $CP$ and $AM$ intersect at $Q$. Calculate the angles that form the lines $AP$ and $BQ$.

2023 Yasinsky Geometry Olympiad, 6

An acute triangle $ABC$ is surrounded by equilateral triangles $KLM$ and $PQR$ such that its vertices lie on the sides of these equilateral triangle as shown on the picture. Lines $PK$ and $QL$ intersect at point $D$. Prove that $\angle ABC + \angle PDQ = 120^o$. (Yurii Biletskyi) [img]https://cdn.artofproblemsolving.com/attachments/4/6/32d3f74f07ca6a8edcabe4a08aa321eb3a5010.png[/img]

2025 Sharygin Geometry Olympiad, 17

Tags: geometry
Let $O$, $I$ be the circumcenter and the incenter of an acute-angled scalene triangle $ABC$; $D$, $E$, $F$ be the touching points of its excircle with the side $BC$ and the extensions of $AC$, $AB$ respectively. Prove that if the orthocenter of the triangle $DEF$ lies on the circumcircle of $ABC$, then it is symmetric to the midpoint of the arc $BC$ with respect to $OI$. Proposed by: P.Puchkov,E.Utkin

Brazil L2 Finals (OBM) - geometry, 2015.3

Let $ABC$ be a triangle and $n$ a positive integer. Consider on the side $BC$ the points $A_1, A_2, ..., A_{2^n-1}$ that divide the side into $2^n$ equal parts, that is, $BA_1=A_1A_2=...=A_{2^n-2}A_{2^n-1}=A_{2^n-1}C$. Set the points $B_1, B_2, ..., B_{2^n-1}$ and $C_1, C_2, ..., C_{2^n-1}$ on the sides $CA$ and $AB$, respectively, analogously. Draw the line segments $AA_1, AA_2, ..., AA_{2^n-1}$, $BB_1, BB_2, ..., BB_{2^n-1}$ and $CC_1, CC_2, ..., CC_{2^n-1}$. Find, in terms of $n$, the number of regions into which the triangle is divided.

2016 BMT Spring, 10

Tags: geometry
Triangle $ABC$ has side lengths $AB = 5$, $BC = 9$, and $AC = 6$. Define the incircle of $ABC$ to be $C_1$. Then, define $C_i$ for $i > 1$ to be externally tangent to $C_{i-1}$ and tangent to $AB$ and $BC$. Compute the sum of the areas of all circles $C_n$.

2011 Canadian Students Math Olympiad, 1

In triangle $ABC$, $\angle{BAC}=60^\circ$ and the incircle of $ABC$ touches $AB$ and $AC$ at $P$ and $Q$, respectively. Lines $PC$ and $QB$ intersect at $G$. Let $R$ be the circumradius of $BGC$. Find the minimum value of $R/BC$. [i]Author: Alex Song[/i]

2018 Oral Moscow Geometry Olympiad, 1

In a right triangle $ABC$ with a right angle $C$, let $AK$ and $BN$ be the angle bisectors. Let $D,E$ be the projections of $C$ on $AK, BN$ respectively. Prove that the length of the segment $DE$ is equal to the radius of the inscribed circle.

2008 IberoAmerican, 5

Let $ ABC$ a triangle and $ X$, $ Y$ and $ Z$ points at the segments $ BC$, $ AC$ and $ AB$, respectively.Let $ A'$, $ B'$ and $ C'$ the circuncenters of triangles $ AZY$,$ BXZ$,$ CYX$, respectively.Prove that $ 4(A'B'C')\geq(ABC)$ with equality if and only if $ AA'$, $ BB'$ and $ CC'$ are concurrents. Note: $ (XYZ)$ denotes the area of $ XYZ$

2010 Germany Team Selection Test, 2

Given a cyclic quadrilateral $ABCD$, let the diagonals $AC$ and $BD$ meet at $E$ and the lines $AD$ and $BC$ meet at $F$. The midpoints of $AB$ and $CD$ are $G$ and $H$, respectively. Show that $EF$ is tangent at $E$ to the circle through the points $E$, $G$ and $H$. [i]Proposed by David Monk, United Kingdom[/i]

2002 Austria Beginners' Competition, 4

In a trapezoid $ABCD$ with base $AB$ let $E$ be the midpoint of side $AD$. Suppose further that $2CD=EC=BC=b$. Let $\angle ECB=120^{\circ}$. Construct the trapezoid and determine its area based on $b$.

2011 Math Hour Olympiad, 6-7

[u]Round 1[/u] [b]p1.[/b] In a chemical lab there are three vials: one that can hold $1$ oz of fluid, another that can hold $2$ oz, and a third that can hold $3$ oz. The first is filled with grape juice, the second with sulfuric acid, and the third with water. There are also $3$ empty vials in the cupboard, also of sizes $1$ oz, $2$ oz, and $3$ oz. In order to save the world with grape-flavored acid, James Bond must make three full bottles, one of each size, filled with a mixture of all three liquids so that each bottle has the same ratio of juice to acid to water. How can he do this, considering he was silly enough not to bring any equipment? [b]p2.[/b] Twelve people, some are knights and some are knaves, are sitting around a table. Knaves always lie and knights always tell the truth. At some point they start up a conversation. The first person says, “There are no knights around this table.” The second says, “There is at most one knight at this table.” The third – “There are at most two knights at the table.” And so on until the $12$th says, “There are at most eleven knights at the table.” How many knights are at the table? Justify your answer. [b]p3.[/b] Aquaman has a barrel divided up into six sections, and he has placed a red herring in each. Aquaman can command any fish of his choice to either ‘jump counterclockwise to the next sector’ or ‘jump clockwise to the next sector.’ Using a sequence of exactly $30$ of these commands, can he relocate all the red herrings to one sector? If yes, show how. If no, explain why not. [img]https://cdn.artofproblemsolving.com/attachments/0/f/956f64e346bae82dee5cbd1326b0d1789100f3.png[/img] [b]p4.[/b] Is it possible to place $13$ integers around a circle so that the sum of any $3$ adjacent numbers is exactly $13$? [b]p5.[/b] Two girls are playing a game. The first player writes the letters $A$ or $B$ in a row, left to right, adding one letter on her turn. The second player switches any two letters after each move by the first player (the letters do not have to be adjacent), or does nothing, which also counts as a move. The game is over when each player has made $2011$ moves. Can the second player plan her moves so that the resulting letters form a palindrome? (A palindrome is a sequence that reads the same forward and backwards, e.g. $AABABAA$.) [u]Round 2[/u] [b]p6.[/b] Eight students participated in a math competition. There were eight problems to solve. Each problem was solved by exactly five people. Show that there are two students who solved all eight problems between them. [b]p7.[/b] There are $3n$ checkers of three different colors: $n$ red, $n$ green and $n$ blue. They were used to randomly fill a board with $3$ rows and $n$ columns so that each square of the board has one checker on it. Prove that it is possible to reshuffle the checkers within each row so that in each column there are checkers of all three colors. Moving checkers to a different row is not allowed. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1978 IMO Shortlist, 4

Let $T_1$ be a triangle having $a, b, c$ as lengths of its sides and let $T_2$ be another triangle having $u, v,w$ as lengths of its sides. If $P,Q$ are the areas of the two triangles, prove that \[16PQ \leq a^2(-u^2 + v^2 + w^2) + b^2(u^2 - v^2 + w^2) + c^2(u^2 + v^2 - w^2).\] When does equality hold?

2015 Caucasus Mathematical Olympiad, 4

The midpoint of the edge $SA$ of the triangular pyramid of $SABC$ has equal distances from all the vertices of the pyramid. Let $SH$ be the height of the pyramid. Prove that $BA^2 + BH^2 = C A^2 + CH^2$.

2012 Indonesia TST, 3

The incircle of a triangle $ABC$ is tangent to the sides $AB,AC$ at $M,N$ respectively. Suppose $P$ is the intersection between $MN$ and the bisector of $\angle ABC$. Prove that $BP$ and $CP$ are perpendicular.

2017 Balkan MO Shortlist, G7

Let $ABC$ be an acute triangle with $AB\ne AC$ and circumcircle $\omega$. The angle bisector of $BAC$ intersects $BC$ and $\omega$ at $D$ and $E$ respectively. Circle with diameter $DE$ intersects $\omega$ again at $F \ne E$. Point $P$ is on $AF$ such that $PB = PC$ and $X$ and $Y$ are feet of perpendiculars from $P$ to $AB$ and $AC$ respectively. Let $H$ and $H'$ be the orthocenters of $ABC$ and $AXY$ respectively. $AH$ meets $\omega$ again at $Q$ . If $AH'$ and $HH'$ intersect the circle with diameter $AH$ again at points $S$ and $T$, respectively, prove that the lines $AT , HS$ and $FQ$ are concurrent.

Indonesia MO Shortlist - geometry, g3.3

Let $ABCD$ be a trapezoid (quadrilateral with one pair of parallel sides) such that $AB < CD$. Suppose that $AC$ and $BD$ meet at $E$ and $AD$ and $BC$ meet at $F$. Construct the parallelograms $AEDK$ and $BECL$. Prove that $EF$ passes through the midpoint of the segment $KL$.

2016 Macedonia JBMO TST, 2

Let $ABCD$ be a parallelogram and let $E$, $F$, $G$, and $H$ be the midpoints of sides $AB$, $BC$, $CD$, and $DA$, respectively. If $BH \cap AC = I$, $BD \cap EC = J$, $AC \cap DF = K$, and $AG \cap BD = L$, prove that the quadrilateral $IJKL$ is a parallelogram.

Estonia Open Junior - geometry, 2009.2.4

The triangle $ABC$ is $| BC | = a$ and $| AC | = b$. On the ray starting from vertex $C$ and passing the midpoint of side $AB$ , choose any point $D$ other than vertex $C$. Let $K$ and $L$ be the projections of $D$ on the lines $AC$ and $BC$, respectively, $K$ and $L$. Find the ratio $| DK | : | DL |$.

1995 Tuymaada Olympiad, 8

Inside the triangle $ABC$ a point $M$ is given . Find the points $P,Q$ and $R$ lying on the sides $AB,BC$ and $AC$ respectively and such so that the sum $MP+PQ+QR+RM$ is the smallest.