This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

1998 Estonia National Olympiad, 2

Let $C$ and $D$ be two distinct points on a semicircle of diameter $AB$. Let $E$ be the intersection of $AC$ and $BD$, $F$ be the intersection of $AD$ and $BC$ and $X, Y$, and $Z$ are the midpoints of $AB, CD$, and $EF$, respectively. Prove that the points $X, Y,$ and $Z$ are collinear.

2023 Olympic Revenge, 4

Let $S=\{(x,y,z)\in \mathbb{Z}^3\}$ the set of points with integer coordinates in the space. Gugu has infinitely many solid spheres. All with radii $\ge (\frac{\pi}2)^3$. Is it possible for Gugu to cover all points of $S$ with his spheres?

1996 ITAMO, 1

Among all the triangles which have a fixed side $l$ and a fixed area $S$, determine for which triangles the product of the altitudes is maximum.

2024 Romanian Master of Mathematics, 3

Given a positive integer $n$, a collection $\mathcal{S}$ of $n-2$ unordered triples of integers in $\{1,2,\ldots,n\}$ is [i]$n$-admissible[/i] if for each $1 \leq k \leq n - 2$ and each choice of $k$ distinct $A_1, A_2, \ldots, A_k \in \mathcal{S}$ we have $$ \left|A_1 \cup A_2 \cup \cdots A_k \right| \geq k+2.$$ Is it true that for all $n > 3$ and for each $n$-admissible collection $\mathcal{S}$, there exist pairwise distinct points $P_1, \ldots , P_n$ in the plane such that the angles of the triangle $P_iP_jP_k$ are all less than $61^{\circ}$ for any triple $\{i, j, k\}$ in $\mathcal{S}$? [i]Ivan Frolov, Russia[/i]

2007 Tournament Of Towns, 1

Let $ABCD$ be a rhombus. Let $K$ be a point on the line $CD$, other than $C$ or $D$, such that $AD = BK$. Let $P$ be the point of intersection of $BD$ with the perpendicular bisector of $BC$. Prove that $A, K$ and $P$ are collinear.

2012 USA Team Selection Test, 1

In acute triangle $ABC$, $\angle{A}<\angle{B}$ and $\angle{A}<\angle{C}$. Let $P$ be a variable point on side $BC$. Points $D$ and $E$ lie on sides $AB$ and $AC$, respectively, such that $BP=PD$ and $CP=PE$. Prove that as $P$ moves along side $BC$, the circumcircle of triangle $ADE$ passes through a fixed point other than $A$.

Kyiv City MO Juniors 2003+ geometry, 2019.9.2

In a right triangle $ABC$, the lengths of the legs satisfy the condition: $BC =\sqrt2 AC$. Prove that the medians $AN$ and $CM$ are perpendicular. (Hilko Danilo)

2024 Malaysian IMO Training Camp, 6

Tags: geometry
Let $\omega_1$, $\omega_2$, $\omega_3$ are three externally tangent circles, with $\omega_1$ and $\omega_2$ tangent at $A$. Choose points $B$ and $C$ on $\omega_1$ so that lines $AB$ and $AC$ are tangent to $\omega_3$. Suppose the line $BC$ intersect $\omega_3$ at two distinct points, and $X$ is the intersection further away to $B$ and $C$ than the other one. Prove that one of the tangent lines of $\omega_2$ passing through $X$, is also tangent to an excircle of triangle $ABC$. [i]Proposed by Ivan Chan Kai Chin[/i]

2009 IMAC Arhimede, 2

In the triangle $ABC$, the circle with the center at the point $O$ touches the pages $AB, BC$ and $CA$ in the points $C_1, A_1$ and $B_1$, respectively. Lines $AO, BO$ and $CO$ cut the inscribed circle at points $A_2, B_2$ and $C_2,$ respectively. Prove that it is the area of the triangle $A_2B_2C_2$ is double from the surface of the hexagon $B_1A_2C_1B_2A_1C_2$. (Moldova)

2017 BMT Spring, 6

Tags: geometry
Given a cube with side length $ 1$, we perform six cuts as follows: one cut parallel to the $xy$-plane, two cuts parallel to the $yz$-plane, and three cuts parallel to the $xz$-plane, where the cuts are made uniformly independent of each other. What is the expected value of the volume of the largest piece?

1994 AMC 8, 22

The two wheels shown below are spun and the two resulting numbers are added. The probability that the sum is even is [asy] draw(circle((0,0),3)); draw(circle((7,0),3)); draw((0,0)--(3,0)); draw((0,-3)--(0,3)); draw((7,3)--(7,0)--(7+3*sqrt(3)/2,-3/2)); draw((7,0)--(7-3*sqrt(3)/2,-3/2)); draw((0,5)--(0,3.5)--(-0.5,4)); draw((0,3.5)--(0.5,4)); draw((7,5)--(7,3.5)--(6.5,4)); draw((7,3.5)--(7.5,4)); label("$3$",(-0.75,0),W); label("$1$",(0.75,0.75),NE); label("$2$",(0.75,-0.75),SE); label("$6$",(6,0.5),NNW); label("$5$",(7,-1),S); label("$4$",(8,0.5),NNE); [/asy] $\text{(A)}\ \dfrac{1}{6} \qquad \text{(B)}\ \dfrac{1}{4} \qquad \text{(C)}\ \dfrac{1}{3} \qquad \text{(D)}\ \dfrac{5}{12} \qquad \text{(E)}\ \dfrac{4}{9}$

2007 Junior Macedonian Mathematical Olympiad, 5

We are given an arbitrary $\bigtriangleup ABC$. a) Can we dissect $\bigtriangleup ABC$ in $4$ pieces, from which we can make two triangle similar to $\bigtriangleup ABC$ (each piece can be used only once)? Justify your answer! b) Is it possible that for every positive integer $n \ge 2$ , we are able to dissect $\bigtriangleup ABC$ in $2n$ pieces, from which we can make two triangles similar to $\bigtriangleup ABC$ (each piece can be used only once)? Justify your answer!

2000 Belarus Team Selection Test, 1.2

Let $P$ be a point inside a triangle $ABC$ with $\angle C = 90^o$ such that $AP = AC$, and let $M$ be the midpoint of $AB$ and $CH$ be the altitude. Prove that $PM$ bisects $\angle BPH$ if and only if $\angle A = 60^o$.

2009 AMC 10, 20

Triangle $ ABC$ has a right angle at $ B$, $ AB \equal{} 1$, and $ BC \equal{} 2$. The bisector of $ \angle BAC$ meets $ \overline{BC}$ at $ D$. What is $ BD$? [asy]unitsize(2cm); defaultpen(linewidth(.8pt)+fontsize(8pt)); dotfactor=4; pair A=(0,1), B=(0,0), C=(2,0); pair D=extension(A,bisectorpoint(B,A,C),B,C); pair[] ds={A,B,C,D}; dot(ds); draw(A--B--C--A--D); label("$1$",midpoint(A--B),W); label("$B$",B,SW); label("$D$",D,S); label("$C$",C,SE); label("$A$",A,NW); draw(rightanglemark(C,B,A,2));[/asy]$ \textbf{(A)}\ \frac {\sqrt3 \minus{} 1}{2} \qquad \textbf{(B)}\ \frac {\sqrt5 \minus{} 1}{2} \qquad \textbf{(C)}\ \frac {\sqrt5 \plus{} 1}{2} \qquad \textbf{(D)}\ \frac {\sqrt6 \plus{} \sqrt2}{2}$ $ \textbf{(E)}\ 2\sqrt3 \minus{} 1$

2022 JHMT HS, 6

For positive real numbers $a$ and $b,$ let $f(a,b)$ denote the real number $x$ such that area of the (non-degenerate) triangle with side lengths $a,b,$ and $x$ is maximized. Find \[ \sum_{n=2}^{100}f\left(\sqrt{\tbinom{n}{2}},\sqrt{\tbinom{n+1}{2}}\right). \]

2013 National Olympiad First Round, 34

How many triples of positive integers $(a,b,c)$ are there such that $a!+b^3 = 18+c^3$? $ \textbf{(A)}\ 4 \qquad\textbf{(B)}\ 3 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ 1 \qquad\textbf{(E)}\ 0 $

2013 NIMO Problems, 6

Let $ABC$ be a triangle with $AB = 42$, $AC = 39$, $BC = 45$. Let $E$, $F$ be on the sides $\overline{AC}$ and $\overline{AB}$ such that $AF = 21, AE = 13$. Let $\overline{CF}$ and $\overline{BE}$ intersect at $P$, and let ray $AP$ meet $\overline{BC}$ at $D$. Let $O$ denote the circumcenter of $\triangle DEF$, and $R$ its circumradius. Compute $CO^2-R^2$. [i]Proposed by Yang Liu[/i]

2003 All-Russian Olympiad Regional Round, 10.6

Let $A_0$ be the midpoint of side $BC$ of triangle $ABC$, and $A'$ be the point of tangency with this side of the inscribed circle. Let's construct a circle $ \omega$ with center at $A_0$ and passing through $A'$. On other sides we will construct similar circles. Prove that if $ \omega$ is tangent to the cirucmscribed circle on arc $BC$ not containing $A$, then another one of the constructed circles touches the circumcircle.

2021 Harvard-MIT Mathematics Tournament., 3

Tags: geometry
Triangle $ABC$ has a right angle at $C$, and $D$ is the foot of the altitude from $C$ to $AB$. Points $L, M,$ and $N$ are the midpoints of segments $AD, DC,$ and $CA,$ respectively. If $CL = 7$ and $BM = 12,$ compute $BN^2$.

1999 All-Russian Olympiad Regional Round, 9.2

In triangle $ABC$, on side $AC$ there are points $D$ and $E$, that $AB = AD$ and $BE = EC$ ($E$ between $A$ and $D$). Point $F$ is midpoint of arc $BC$ of circumcircle of triangle $ABC$. Prove that the points $B, E, D, F$ lie on the same circle.

2019 Sharygin Geometry Olympiad, 21

Tags: geometry
An ellipse $\Gamma$ and its chord $AB$ are given. Find the locus of orthocenters of triangles $ABC$ inscribed into $\Gamma$.

2002 India IMO Training Camp, 11

Let $ABC$ be a triangle and $P$ an exterior point in the plane of the triangle. Suppose the lines $AP$, $BP$, $CP$ meet the sides $BC$, $CA$, $AB$ (or extensions thereof) in $D$, $E$, $F$, respectively. Suppose further that the areas of triangles $PBD$, $PCE$, $PAF$ are all equal. Prove that each of these areas is equal to the area of triangle $ABC$ itself.

2006 AIME Problems, 10

This is the one with the 8 circles? I made each circle into the square in which the circle is inscribed, then calculated it with that. It got the right answer but I don't think that my method is truly valid...

2010 JBMO Shortlist, 2

A $9\times 7$ rectangle is tiled with tiles of the two types: L-shaped tiles composed by three unit squares (can be rotated repeatedly with $90^\circ$) and square tiles composed by four unit squares. Let $n\ge 0$ be the number of the $2 \times 2 $ tiles which can be used in such a tiling. Find all the values of $n$.

1982 Czech and Slovak Olympiad III A, 1

Given a tetrahedron $ABCD$ and inside the tetrahedron points $K, L, M, N$ that do not lie on a plane. Denote also the centroids of $P$, $Q$, $R$, $S$ of the tetrahedrons $KBCD$, $ALCD$, $ABMD$, $ABCN$ do not lie on a plane. Let $T$ be the centroid of the tetrahedron ABCD, $T_o$ be the centroid of the tetrahedron $PQRS$ and $T_1$ be the centroid of the tetrahedron $KLMN$. a) Prove that the points $T, T_0, T_1$ lie in one straight line. b) Determine the ratio $|T_0T| : |T_0 T_1|$.