This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2011 IberoAmerican, 3

Let $ABC$ be a triangle and $X,Y,Z$ be the tangency points of its inscribed circle with the sides $BC, CA, AB$, respectively. Suppose that $C_1, C_2, C_3$ are circle with chords $YZ, ZX, XY$, respectively, such that $C_1$ and $C_2$ intersect on the line $CZ$ and that $C_1$ and $C_3$ intersect on the line $BY$. Suppose that $C_1$ intersects the chords $XY$ and $ZX$ at $J$ and $M$, respectively; that $C_2$ intersects the chords $YZ$ and $XY$ at $L$ and $I$, respectively; and that $C_3$ intersects the chords $YZ$ and $ZX$ at $K$ and $N$, respectively. Show that $I, J, K, L, M, N$ lie on the same circle.

1992 China Team Selection Test, 1

A triangle $ABC$ is given in the plane with $AB = \sqrt{7},$ $BC = \sqrt{13}$ and $CA = \sqrt{19},$ circles are drawn with centers at $A,B$ and $C$ and radii $\frac{1}{3},$ $\frac{2}{3}$ and $1,$ respectively. Prove that there are points $A',B',C'$ on these three circles respectively such that triangle $ABC$ is congruent to triangle $A'B'C'.$

1987 AMC 12/AHSME, 2

A triangular corner with side lengths $DB=EB=1$ is cut from equilateral triangle $ABC$ of side length $3$. The perimeter of the remaining quadrilateral is [asy] draw((0,0)--(2,0)--(2.5,.87)--(1.5,2.6)--cycle, linewidth(1)); draw((2,0)--(3,0)--(2.5,.87)); label("3", (0.75,1.3), NW); label("1", (2.5, 0), S); label("1", (2.75,.44), NE); label("A", (1.5,2.6), N); label("B", (3,0), S); label("C", (0,0), W); label("D", (2.5,.87), NE); label("E", (2,0), S);[/asy] $\text{(A)} \ 6 \qquad \text{(B)} \ 6\frac12 \qquad \text{(C)} \ 7 \qquad \text{(D)} \ 7\frac12 \qquad \text{(E)} \ 8$

2018 Ramnicean Hope, 1

Show that $ 2/3+\sin 2018^{\circ } >0. $ [i]Costică Ambrinoc[/i]

1976 Czech and Slovak Olympiad III A, 5

Let $\mathbf{P}_1,\mathbf{P}_2$ be convex polygons with perimeters $o_1,o_2,$ respectively. Show that if $\mathbf P_1\subseteq\mathbf P_2,$ then $o_1\le o_2.$

1999 Harvard-MIT Mathematics Tournament, 9

How many ways are there to cover a $3\times 8$ rectangle with $12$ identical dominoes?

Indonesia MO Shortlist - geometry, g10

Given two circles with one of the centers of the circle is on the other circle. The two circles intersect at two points $C$ and $D$. The line through $D$ intersects the two circles again at $A$ and $ B$. Let $H$ be the midpoint of the arc $AC$ that does not contain $D$ and the segment $HD$ intersects circle that does not contain $H$ at point $E$. Show that $E$ is the center of the incircle of the triangle $ACD$.

2021 Ukraine National Mathematical Olympiad, 2

Find all natural numbers $n \ge 3$ for which in an arbitrary $n$-gon one can choose $3$ vertices dividing its boundary into three parts, the lengths of which can be the lengths of the sides of some triangle. (Fedir Yudin)

2016 USA Team Selection Test, 2

Let $ABC$ be a scalene triangle with circumcircle $\Omega$, and suppose the incircle of $ABC$ touches $BC$ at $D$. The angle bisector of $\angle A$ meets $BC$ and $\Omega$ at $E$ and $F$. The circumcircle of $\triangle DEF$ intersects the $A$-excircle at $S_1$, $S_2$, and $\Omega$ at $T \neq F$. Prove that line $AT$ passes through either $S_1$ or $S_2$. [i]Proposed by Evan Chen[/i]

2010 Tournament Of Towns, 4

A square board is dissected into $n^2$ rectangular cells by $n-1$ horizontal and $n-1$ vertical lines. The cells are painted alternately black and white in a chessboard pattern. One diagonal consists of $n$ black cells which are squares. Prove that the total area of all black cells is not less than the total area of all white cells.

2012 Sharygin Geometry Olympiad, 15

Given triangle $ABC$. Consider lines $l$ with the next property: the reflections of $l$ in the sidelines of the triangle concur. Prove that all these lines have a common point.

May Olympiad L1 - geometry, 2021.1

Tags: geometry
In a forest there are $5$ trees $A, B, C, D, E$ that are in that order on a straight line. At the midpoint of $AB$ there is a daisy, at the midpoint of $BC$ there is a rose bush, at the midpoint of $CD$ there is a jasmine, and at the midpoint of $DE$ there is a carnation. The distance between $A$ and $E$ is $28$ m; the distance between the daisy and the carnation is $20$ m. Calculate the distance between the rose bush and the jasmine.

2014 China Team Selection Test, 1

$ABCD$ is a cyclic quadrilateral, with diagonals $AC,BD$ perpendicular to each other. Let point $F$ be on side $BC$, the parallel line $EF$ to $AC$ intersect $AB$ at point $E$, line $FG$ parallel to $BD$ intersect $CD$ at $G$. Let the projection of $E$ onto $CD$ be $P$, projection of $F$ onto $DA$ be $Q$, projection of $G$ onto $AB$ be $R$. Prove that $QF$ bisects $\angle PQR$.

2019 Brazil EGMO TST, 3

Let $ABC$ be a triangle and $E$ and $F$ two arbitrary points on sides $AB$ and $AC$, respectively. The circumcircle of triangle $AEF$ meets the circumcircle of triangle $ABC$ again at point $M$. The point $D$ is such that $EF$ bisects the segment $MD$ . Finally, $O$ is the circumcenter of triangle $ABC$. Prove that $D$ lies on line $BC$ if and only if $O$ lies on the circumcircle of triangle $AEF$.

2017 ELMO Shortlist, 2

Tags: geometry
Let $ABC$ be a scalene triangle with $\angle A = 60^{\circ}$. Let $E$ and $F$ be the feet of the angle bisectors of $\angle ABC$ and $\angle ACB$, respectively, and let $I$ be the incenter of $\triangle ABC$. Let $P,Q$ be distinct points such that $\triangle PEF$ and $\triangle QEF$ are equilateral. If $O$ is the circumcenter of of $\triangle APQ$, show that $\overline{OI}\perp \overline{BC}$. [i]Proposed by Vincent Huang

2003 USAMO, 4

Let $ABC$ be a triangle. A circle passing through $A$ and $B$ intersects segments $AC$ and $BC$ at $D$ and $E$, respectively. Lines $AB$ and $DE$ intersect at $F$, while lines $BD$ and $CF$ intersect at $M$. Prove that $MF = MC$ if and only if $MB\cdot MD = MC^2$.

Indonesia Regional MO OSP SMA - geometry, 2005.1

The length of the largest side of the cyclic quadrilateral $ABCD$ is $a$, while the radius of the circumcircle of $\vartriangle ACD$ is $1$. Find the smallest possible value for $a$. Which cyclic quadrilateral $ABCD$ gives the value $a$ equal to the smallest value?

2016 CHMMC (Fall), 14

Tags: function , geometry
For a unit circle $O$, arrange points $A,B,C,D$ and $E$ in that order evenly along $O$'s circumference. For each of those points, draw the arc centered at that point inside O from the point to its left to the point to its right. Denote the outermost intersections of these arcs as $A', B', C', D'$ and $E'$, where the prime of any point is opposite the point. The length of $AC'$ can be written as an expression $f(x)$, where $f$ is a trigonometric function. Find this expression.

PEN N Problems, 4

Show that if an infinite arithmetic progression of positive integers contains a square and a cube, it must contain a sixth power.

2014 USAMTS Problems, 4:

Let $\omega_P$ and $\omega_Q$ be two circles of radius $1$, intersecting in points $A$ and $B$. Let $P$ and $Q$ be two regular $n$-gons (for some positive integer $n\ge4$) inscribed in $\omega_P$ and $\omega_Q$, respectively, such that $A$ and $B$ are vertices of both $P$ and $Q$. Suppose a third circle $\omega$ of radius $1$ intersects $P$ at two of its vertices $C$, $D$ and intersects $Q$ at two of its vertices $E$, $F$. Further assume that $A$, $B$, $C$, $D$, $E$, $F$ are all distinct points, that $A$ lies outside of $\omega$, and that $B$ lies inside $\omega$. Show that there exists a regular $2n$-gon that contains $C$, $D$, $E$, $F$ as four of its vertices.

2013 Today's Calculation Of Integral, 880

For $a>2$, let $f(t)=\frac{\sin ^ 2 at+t^2}{at\sin at},\ g(t)=\frac{\sin ^ 2 at-t^2}{at\sin at}\ \left(0<|t|<\frac{\pi}{2a}\right)$ and let $C: x^2-y^2=\frac{4}{a^2}\ \left(x\geq \frac{2}{a}\right).$ Answer the questions as follows. (1) Show that the point $(f(t),\ g(t))$ lies on the curve $C$. (2) Find the normal line of the curve $C$ at the point $\left(\lim_{t\rightarrow 0} f(t),\ \lim_{t\rightarrow 0} g(t)\right).$ (3) Let $V(a)$ be the volume of the solid generated by a rotation of the part enclosed by the curve $C$, the nornal line found in (2) and the $x$-axis. Express $V(a)$ in terms of $a$, then find $\lim_{a\to\infty} V(a)$.

2012 AMC 12/AHSME, 18

Triangle $ABC$ has $AB=27$, $AC=26$, and $BC=25$. Let $I$ denote the intersection of the internal angle bisectors of $\triangle ABC$. What is $BI$? $ \textbf{(A)}\ 15\qquad\textbf{(B)}\ 5+\sqrt{26}+3\sqrt{3}\qquad\textbf{(C)}\ 3\sqrt{26}\qquad\textbf{(D)}\ \frac{2}{3}\sqrt{546}\qquad\textbf{(E)}\ 9\sqrt{3} $

1968 German National Olympiad, 2

Which of all planes, the one and the same body diagonal of a cube with the edge length $a$, cuts out a cut figure with the smallest area from the cube? Calculate the area of such a cut figure. [hide=original wording]Welche von allen Ebenen, die eine und dieselbe Korperdiagonale eines Wurfels mit der Kantenlange a enthalten, schneiden aus den W¨urfel eine Schnittfigur kleinsten Flacheninhaltes heraus? Berechnen Sie den Fl¨acheninhalt solch einer Schnittfigur![/hide]

1991 Arnold's Trivium, 86

Through the centre of a cube (tetrahedron, icosahedron) draw a straight line in such a way that the sum of the squares of its distances from the vertices is a) minimal, b) maximal.

2002 Junior Balkan Team Selection Tests - Romania, 2

The diagonals $AC$ and $BD$ of a convex quadrilateral $ABCD$ meet at $O$. Let $m$ be the measure of the acute angle formed by these diagonals. A variable angle $xOy$ of measure $m$ intersects the quadrilateral by a convex quadrilateral of constant area. Prove that $ABCD$ is a square.