This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

KoMaL A Problems 2024/2025, A. 897

Let $O$ denote the origin and let $\gamma$ be the circle with center $(1,0)$ and radius $1$ in the Cartesian system of coordinates. Let $\lambda$ be a real number from the interval $(0,2)$, and let the line $x=\lambda$ intersect the circle $\gamma$ at points $P$ and $Q$. The lines $OP$ and $OQ$ intersect the line $x=2-\lambda$ at the points $P'$ and $Q'$, respectively. Let $\mathcal G$ denote the locus of such points $P'$ and $Q'$ as $\lambda$ varies over the interval $(0,2)$. Prove that there exist points $R$ and $S$ different from the origin in the plane such that for every $A\in \mathcal G$ there exists a point $A'$ on line $OA$ satisfying \[ A'R^2=(A'S-OS)^2=A'A\cdot A'O.\] [i]Proposed by: Áron Bán-Szabó, Budapest[/i]

1993 Romania Team Selection Test, 3

Suppose that each of the diagonals $AD,BE,CF$ divides the hexagon $ABCDEF$ into two parts of the same area and perimeter. Does the hexagon necessarily have a center of symmetry?

2000 BAMO, 2

Let $ABC$ be a triangle with $D$ the midpoint of side $AB, E$ the midpoint of side $BC$, and $F$ the midpoint of side $AC$. Let $k_1$ be the circle passing through points $A, D$, and $F$, let $k_2$ be the circle passing through points $B, E$, and $D$, and let $k_3$ be the circle passing through $C, F$, and $E$. Prove that circles $k_1, k_2$, and $k_3$ intersect in a point.

2003 Mediterranean Mathematics Olympiad, 4

Consider a system of infinitely many spheres made of metal, with centers at points $(a, b, c) \in \mathbb Z^3$. We say that the system is stable if the temperature of each sphere equals the average temperature of the six closest spheres. Assuming that all spheres in a stable system have temperatures between $0^\circ C$ and $1^\circ C$, prove that all the spheres have the same temperature.

2013 Grand Duchy of Lithuania, 2

Let $ABC$ be an isosceles triangle with $AB = AC$. The points $D, E$ and $F$ are taken on the sides $BC, CA$ and $AB$, respectively, so that $\angle F DE = \angle ABC$ and $FE$ is not parallel to $BC$. Prove that the line $BC$ is tangent to the circumcircle of $\vartriangle DEF$ if and only if $D$ is the midpoint of the side $BC$.

2021 Saudi Arabia Training Tests, 18

Let $ABC$ be a triangle with $AB < AC$ and incircle $(I)$ tangent to $BC$ at $D$. Take $K$ on $AD$ such that $CD = CK$. Suppose that $AD$ cuts $(I)$ at $G$ and $BG$ cuts $CK$ at $L$. Prove that K is the midpoint of $CL$.

2013 ELMO Shortlist, 7

A $2^{2014} + 1$ by $2^{2014} + 1$ grid has some black squares filled. The filled black squares form one or more snakes on the plane, each of whose heads splits at some points but never comes back together. In other words, for every positive integer $n$ greater than $2$, there do not exist pairwise distinct black squares $s_1$, $s_2$, \dots, $s_n$ such that $s_i$ and $s_{i+1}$ share an edge for $i=1,2, \dots, n$ (here $s_{n+1}=s_1$). What is the maximum possible number of filled black squares? [i]Proposed by David Yang[/i]

2019 China Western Mathematical Olympiad, 2

Let $O,H$ be the circumcenter and orthocenter of acute triangle $ABC$ with $AB\neq AC$, respectively. Let $M$ be the midpoint of $BC$ and $K$ be the intersection of $AM$ and the circumcircle of $\triangle BHC$, such that $M$ lies between $A$ and $K$. Let $N$ be the intersection of $HK$ and $BC$. Show that if $\angle BAM=\angle CAN$, then $AN\perp OH$.

1978 Poland - Second Round, 5

Prove that there is no inclined plane such that any tetrahedron placed arbitrarily with a certain face on the plane will not fall over. It means the following: Given a plane $ \pi $ and a line $ l $ not perpendicular to it. Prove that there is a tetrahedron $ T $ such that for each of its faces $ S $ there is in the plane $ \pi $ a triangle $ ABC $ congruent to $ S $ and there is a point $ D $ such that the tetrahedron $ ABCD $ congruent to $ T $ and the line parallel to $ l $ passing through the center of gravity of the tetrahedron $ ABCD $ does not intersect the triangle $ ABC $. Note. The center of gravity of a tetrahedron is the intersection point of the segments connecting the centers of gravity of the faces of this tetrahedron with the opposite vertices (it is known that such a point always exists).

2019 APMO, 3

Tags: geometry
Let $ABC$ be a scalene triangle with circumcircle $\Gamma$. Let $M$ be the midpoint of $BC$. A variable point $P$ is selected in the line segment $AM$. The circumcircles of triangles $BPM$ and $CPM$ intersect $\Gamma$ again at points $D$ and $E$, respectively. The lines $DP$ and $EP$ intersect (a second time) the circumcircles to triangles $CPM$ and $BPM$ at $X$ and $Y$, respectively. Prove that as $P$ varies, the circumcircle of $\triangle AXY$ passes through a fixed point $T$ distinct from $A$.

1992 Romania Team Selection Test, 1

Let $S > 1$ be a real number. The Cartesian plane is partitioned into rectangles whose sides are parallel to the axes of the coordinate system. and whose vertices have integer coordinates. Prove that if the area of each triangle if at most $S$, then for any positive integer $k$ there exist $k$ vertices of these rectangles which lie on a line.

2000 South africa National Olympiad, 4

$ABCD$ is a square of side 1. $P$ and $Q$ are points on $AB$ and $BC$ such that $\widehat{PDQ} = 45^{\circ}$. Find the perimeter of $\Delta PBQ$.

2006 IMO Shortlist, 10

Assign to each side $b$ of a convex polygon $P$ the maximum area of a triangle that has $b$ as a side and is contained in $P$. Show that the sum of the areas assigned to the sides of $P$ is at least twice the area of $P$.

2021 HMNT, 1

Tags: geometry
Let $ABCD$ be a parallelogram. Let $E$ be the midpoint of $AB$ and $F$ be the midpoint of $CD$. Points $P$ and $Q$ are on segments $EF$ and $CF$, respectively, such that $A, P$, and $Q$ are collinear. Given that $EP = 5$, $P F = 3$, and $QF = 12$, find $CQ$.

2008 Balkan MO Shortlist, G5

The circle $k_a$ touches the extensions of sides $AB$ and $BC$, as well as the circumscribed circle of the triangle $ABC$ (from the outside). We denote the intersection of $k_a$ with the circumscribed circle of the triangle $ABC$ by $A'$. Analogously, we define points $B'$ and $C'$. Prove that the lines $AA',BB'$ and $CC'$ intersect in one point.

2009 Today's Calculation Of Integral, 491

Let $ f(x)\equal{}\sin 3x\plus{}\cos x,\ g(x)\equal{}\cos 3x\plus{}\sin x.$ (1) Evaluate $ \int_0^{2\pi} \{f(x)^2\plus{}g(x)^2\}\ dx$. (2) Find the area of the region bounded by two curves $ y\equal{}f(x)$ and $ y\equal{}g(x)\ (0\leq x\leq \pi).$

2019 India PRMO, 23

Let $ABCD$ be a convex cyclic quadilateral. Suppose $P$ is a point in the plane of the quadilateral such that the sum of its distances from the vertices of $ABCD$ is the least. If $$\{PC, PB, PC, PD\} = \{3, 4, 6, 8\}$$, what is the maxumum possible area of $ABCD$?

2008 Saint Petersburg Mathematical Olympiad, 6

In cyclic quadrilateral $ABCD$ rays $AB$ and $DC$ intersect at point $E$, while segments $AC$ and $BD$ intersect at $F$. Point $P$ is on ray $EF$ such that angles $BPE$ and $CPE$ are congruent. Prove that angles $APB$ and $DPC$ are also equal.

2009 Balkan MO Shortlist, G3

Let $ABCD$ be a convex quadrilateral, and $P$ be a point in its interior. The projections of $P$ on the sides of the quadrilateral lie on a circle with center $O$. Show that $O$ lies on the line through the midpoints of $AC$ and $BD$.

2007 South East Mathematical Olympiad, 2

$AB$ is the diameter of semicircle $O$. $C$,$D$ are two arbitrary points on semicircle $O$. Point $P$ lies on line $CD$ such that line $PB$ is tangent to semicircle $O$ at $B$. Line $PO$ intersects line $CA$, $AD$ at point $E$, $F$ respectively. Prove that $OE$=$OF$.

2020 Paraguay Mathematical Olympiad, 3

Tags: geometry , area
In triangle $ABC$, side $AC$ is $8$ cm. Two segments are drawn parallel to $AC$ that have their ends on $AB$ and $BC$ and that divide the triangle into three parts of equal area. What is the length of the parallel segment closest to $AC$?

2019 India PRMO, 24

A $1 \times n$ rectangle ($n \geq 1 $) is divided into $n$ unit ($1 \times 1$) squares. Each square of this rectangle is colored red, blue or green. Let $f(n)$ be the number of colourings of the rectangle in which there are an even number of red squares. What is the largest prime factor of $f(9)/f(3)$? (The number of red squares can be zero.)

2025 JBMO TST - Turkey, 1

Tags: geometry
Let $ABCD$ be a cyclic quadrilateral and let the intersection point of lines $AB$ and $CD$ be $E$. Let the points $K$ and $L$ be arbitrary points on sides $CD$ and $AB$ respectively, which satisfy the conditions $$\angle KAD = \angle KBC \quad \text{and} \quad \angle LDA = \angle LCB.$$ Prove that $EK = EL$.

2014 Baltic Way, 14

Let $ABCD$ be a convex quadrilateral such that the line $BD$ bisects the angle $ABC.$ The circumcircle of triangle $ABC$ intersects the sides $AD$ and $CD$ in the points $P$ and $Q,$ respectively. The line through $D$ and parallel to $AC$ intersects the lines $BC$ and $BA$ at the points $R$ and $S,$ respectively. Prove that the points $P, Q, R$ and $S$ lie on a common circle.

2006 AMC 12/AHSME, 21

Rectangle $ ABCD$ has area 2006. An ellipse with area $ 2006\pi$ passes through $ A$ and $ C$ and has foci at $ B$ and $ D$. What is the perimeter of the rectangle? (The area of an ellipse is $ \pi ab$, where $ 2a$ and $ 2b$ are the lengths of its axes.) $ \textbf{(A) } \frac {16\sqrt {2006}}{\pi} \qquad \textbf{(B) } \frac {1003}4 \qquad \textbf{(C) } 8\sqrt {1003} \qquad \textbf{(D) } 6\sqrt {2006} \qquad \textbf{(E) } \frac {32\sqrt {1003}}\pi$