This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

1997 Cono Sur Olympiad, 2

Tags: geometry
Let $C$ be a circunference, $O$ is your circumcenter, $AB$ is your diameter and $R$ is any point in $C$ ($R$ is different of $A$ and $B$) Let $P$ be the foot of perpendicular by $O$ to $AR$, in the line $OP$ we match a point $Q$, where $QP$ is $\frac{OP}{2}$ and the point $Q$ isn't in the segment $OP$. In $Q$, we will do a parallel line to $AB$ that cut the line $AR$ in $T$. Denote $H$ the point of intersections of the line $AQ$ and $OT$. Show that $H$, $B$ and $R$ are collinears.

2007 Princeton University Math Competition, 8

For how many rational numbers $p$ is the area of the triangle formed by the intercepts and vertex of $f(x) = -x^2+4px-p+1$ an integer?

Geometry Mathley 2011-12, 16.1

Let $ABCD$ be a cyclic quadrilateral with two diagonals intersect at $E$. Let $ M$, $N$, $P$, $Q$ be the reflections of $ E $ in midpoints of $AB$, $BC$, $CD$, $DA$ respectively. Prove that the Euler lines of $ \triangle MAB$, $\triangle NBC$, $\triangle PCD,$ $\triangle QDA$ are concurrent. Trần Quang Hùng

2005 Oral Moscow Geometry Olympiad, 4

A sphere can be inscribed into a pyramid, the base of which is a parallelogram. Prove that the sums of the areas of its opposite side faces are equal. (M. Volchkevich)

2006 Victor Vâlcovici, 2

Consider a point $ B $ on a segment $ AC. $ Find the locus of the points $ M $ that have the property that the circumcircles of $ ABM $ and $ BCM $ have equal radii. [i]Nicolae Soare[/i]

2020 Poland - Second Round, 3.

Let $M$ be the midpoint of the side $BC$ of a acute triangle $ABC$. Incircle of the triangle $ABM$ is tangent to the side $AB$ at the point $D$. Incircle of the triangle $ACM$ is tangent to the side $AC$ at the point $E$. Let $F$ be the such point, that the quadrilateral $DMEF$ is a parallelogram. Prove that $F$ lies on the bisector of $\angle BAC$.

2019 Dutch IMO TST, 3

Let $ABC$ be an acute angles triangle with $O$ the center of the circumscribed circle. Point $Q$ lies on the circumscribed circle of $\vartriangle BOC$ so that $OQ$ is a diameter. Point $M$ lies on $CQ$ and point $N$ lies internally on line segment $BC$ so that $ANCM$ is a parallelogram. Prove that the circumscribed circle of $\vartriangle BOC$ and the lines $AQ$ and $NM$ pass through the same point.

1995 Vietnam National Olympiad, 3

Given an integer $ n\ge 2$ and a reular 2n-gon. Color all verices of the 2n-gon with n colors such that: [b](i)[/b] Each vertice is colored by exactly one color. [b](ii)[/b] Two vertices don't have the same color. Two ways of coloring, satisfying the conditions above, are called equilavent if one obtained from the other by a rotation whose center is the center of polygon. Find the total number of mutually non-equivalent ways of coloring. [i]Alternative statement:[/i] In how many ways we can color vertices of an regular 2n-polygon using n different colors such that two adjent vertices are colored by different colors. Two colorings which can be received from each other by rotation are considered as the same.

1969 Yugoslav Team Selection Test, Problem 3

Tags: geometry , rates
Points $A$ and $B$ move with a constant speed along lines $a$ and $b$. Two corresponding positions of these points $A_1,B_1$, and $A_2,B_2$ are known. Find the position of $A$ and $B$ for which the length of $AB$ is minimal.

2013 Harvard-MIT Mathematics Tournament, 1

Arpon chooses a positive real number $k$. For each positive integer $n$, he places a marker at the point $(n,nk)$ in the $(x,y)$ plane. Suppose that two markers whose $x$-coordinates differ by $4$ have distance $31$. What is the distance between the markers $(7,7k)$ and $(19,19k)$?

Novosibirsk Oral Geo Oly VIII, 2016.3

Tags: geometry , square , angle
A square is drawn on a sheet of grid paper on the sides of the cells $ABCD$ with side $8$. Point $E$ is the midpoint of side $BC$, $Q$ is such a point on the diagonal $AC$ such that $AQ: QC = 3: 1$. Find the angle between straight lines $AE$ and $DQ$.

2013 Balkan MO Shortlist, G2

Let $ABCD$ be a quadrilateral, let $O$ be the intersection point of diagonals $AC$ and $BD$, and let $P$ be the intersection point of sides $AB$ and $CD$. Consider the parallelograms $AODE$ and $BOCF$. Prove that $E, F$ and $P$ are collinear.

2013 Hanoi Open Mathematics Competitions, 10

Consider the set of all rectangles with a given area $S$. Find the largest value o $ M = \frac{16-p}{p^2+2p}$ where $p$ is the perimeter of the rectangle.

2023 CMIMC Geometry, 9

Tags: geometry
Let $\triangle ABC$ be a triangle with circumcenter $O$ satisfying $AB=13$, $BC = 15$, and $AC = 14$. Suppose there is a point $P$ such that $PB \perp BC$ and $PA \perp AB$. Let $X$ be a point on $AC$ such that $BX \perp OP$. What is the ratio $AX/XC$? [i]Proposed by Thomas Lam[/i]

2023 Iran MO (2nd Round), P1

Tags: geometry
1. In right triangle $ABC$ with $\angle{A}= \textdegree{90}$, point $P$ is chosen. $D \in BC$ such that $PD \perp BC$. Let the intersection of $PD$ with $AB$ and $AC$ be $E$ and $F$ respectively. Denote by $X$ and $Y$ as the intersection of $(APE)$ and $(APF)$ with $BP$ and $CP$ respectively. Prove that $CX,BY,PD$ are concurrent.

1963 Leningrad Math Olympiad, grade 7

[b]7.1 . [/b] The area of the quadrilateral is $3$ cm$^2$ , and the lengths of its diagonals are $6$ cm and $2$ cm. Find the angle between the diagonals. [b]7.2[/b] Prove that the number $1 + 2^{3456789}$ is composite. [b]7.3[/b] $20$ people took part in the chess tournament. The participant who took clear (undivided) $19$th place scored $9.5$ points. How could they distribute points among other participants? [b]7.4[/b] The sum of the distances between the midpoints of opposite sides of a quadrilateral is equal to its semi-perimeter. Prove that this quadrilateral is a parallelogram. [b]7.5[/b] $40$ people travel on a bus without a conductor passengers carrying only coins in denominations of $10$, $15$ and $20$ kopecks. Total passengers have $ 49$ coins. Prove that passengers will not be able to pay the required amount of money to the ticket office and pay each other correctly. (Cost of a bus ticket in 1963 was 5 kopecks.) [b]7.6[/b] Some natural number $a$ is divided with a remainder by all natural numbers less than $a$. The sum of all the different (!) remainders turned out to be equal to $a$. Find $a$. [b]7.7[/b] Two squares were cut out of a chessboard. In what case is it possible and in what case not to cover the remaining squares of the board with dominoes (i.e., figures of the form $2\times 1$) without overlapping? PS. You should use hide for answers.Collected [url=https://artofproblemsolving.com/community/c3983460_1963_leningrad_math_olympiad]here[/url].

2017 Puerto Rico Team Selection Test, 2

For an acute triangle $ ABC $ let $ H $ be the point of intersection of the altitudes $ AA_1 $, $ BB_1 $, $ CC_1 $. Let $ M $ and $ N $ be the midpoints of the $ BC $ and $ AH $ segments, respectively. Show that $ MN $ is the perpendicular bisector of segment $ B_1C_1 $.

2008 Peru Iberoamerican Team Selection Test, P2

Let $ ABCD$ be a convex quadrilateral and let $ P$ and $ Q$ be points in $ ABCD$ such that $ PQDA$ and $ QPBC$ are cyclic quadrilaterals. Suppose that there exists a point $ E$ on the line segment $ PQ$ such that $ \angle PAE \equal{} \angle QDE$ and $ \angle PBE \equal{} \angle QCE$. Show that the quadrilateral $ ABCD$ is cyclic. [i]Proposed by John Cuya, Peru[/i]

Estonia Open Senior - geometry, 2005.1.2

Two circles $c_1$ and $c_2$ with centres $O_1$ and $O_2$, respectively, are touching externally at $P$. On their common tangent at $P$, point $A$ is chosen, rays drawn from which touch the circles $c_1$ and $c_2$ at points $P_1$ and $P_2$ both different from $P$. It is known that $\angle P_1AP_2 = 120^o$ and angles $P_1AP$ and $P_2AP$ are both acute. Rays $AP_1$ and $AP_2$ intersect line $O_1O_2$ at points $G_1$ and $G_2$, respectively. The second intersection between ray $AO_1$ and $c_1$ is $H_1$, the second intersection between ray $AO_2$ and $c_2$ is $H_2$. Lines $G_1H_1$ and $AP$ intersect at $K$. Prove that if $G_1K$ is a tangent to circle $c_1$, then line $G_2A$ is tangent to circle $c_2$ with tangency point $H_2$.

2009 Belarus Team Selection Test, 2

Given trapezoid $ ABCD$ with parallel sides $ AB$ and $ CD$, assume that there exist points $ E$ on line $ BC$ outside segment $ BC$, and $ F$ inside segment $ AD$ such that $ \angle DAE \equal{} \angle CBF$. Denote by $ I$ the point of intersection of $ CD$ and $ EF$, and by $ J$ the point of intersection of $ AB$ and $ EF$. Let $ K$ be the midpoint of segment $ EF$, assume it does not lie on line $ AB$. Prove that $ I$ belongs to the circumcircle of $ ABK$ if and only if $ K$ belongs to the circumcircle of $ CDJ$. [i]Proposed by Charles Leytem, Luxembourg[/i]

II Soros Olympiad 1995 - 96 (Russia), 9.8

The altitude, angle bisector and median coming from one vertex of the triangle are equal to $\sqrt3$, $2$ and $\sqrt6$, respectively. Find the radius of the circle circumscribed round this triangle.

1973 AMC 12/AHSME, 35

In the unit circle shown in the figure, chords $PQ$ and $MN$ are parallel to the unit radius $OR$ of the circle with center at $O$. Chords $MP$, $PQ$, and $NR$ are each $s$ units long and chord $MN$ is $d$ units long. [asy] draw(Circle((0,0),10)); draw((0,0)--(10,0)--(8.5,5.3)--(-8.5,5.3)--(-3,9.5)--(3,9.5)); dot((0,0)); dot((10,0)); dot((8.5,5.3)); dot((-8.5,5.3)); dot((-3,9.5)); dot((3,9.5)); label("1", (5,0), S); label("s", (8,2.6)); label("d", (0,4)); label("s", (-5,7)); label("s", (0,8.5)); label("O", (0,0),W); label("R", (10,0), E); label("M", (-8.5,5.3), W); label("N", (8.5,5.3), E); label("P", (-3,9.5), NW); label("Q", (3,9.5), NE); [/asy] Of the three equations \[ \textbf{I.}\ d-s=1, \qquad \textbf{II.}\ ds=1, \qquad \textbf{III.}\ d^2-s^2=\sqrt{5} \]those which are necessarily true are $\textbf{(A)}\ \textbf{I}\ \text{only} \qquad\textbf{(B)}\ \textbf{II}\ \text{only} \qquad\textbf{(C)}\ \textbf{III}\ \text{only} \qquad\textbf{(D)}\ \textbf{I}\ \text{and}\ \textbf{II}\ \text{only} \qquad\textbf{(E)}\ \textbf{I, II}\ \text{and} \textbf{III}$

1962 All Russian Mathematical Olympiad, 020

Given regular pentagon $ABCDE$. $M$ is an arbitrary point inside $ABCDE$ or on its side. Let the distances $|MA|, |MB|, ... , |ME|$ be renumerated and denoted with $$r_1\le r_2\le r_3\le r_4\le r_5.$$ Find all the positions of the $M$, giving $r_3$ the minimal possible value. Find all the positions of the $M$, giving $r_3$ the maximal possible value.

2013 India PRMO, 8

Let $AD$ and $BC$ be the parallel sides of a trapezium $ABCD$. Let $P$ and $Q$ be the midpoints of the diagonals $AC$ and $BD$. If $AD = 16$ and $BC = 20$, what is the length of $PQ$?

2001 IberoAmerican, 2

The incircle of the triangle $\triangle{ABC}$ has center at $O$ and it is tangent to the sides $BC$, $AC$ and $AB$ at the points $X$, $Y$ and $Z$, respectively. The lines $BO$ and $CO$ intersect the line $YZ$ at the points $P$ and $Q$, respectively. Show that if the segments $XP$ and $XQ$ has the same length, then the triangle $\triangle ABC$ is isosceles.