This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2012 JBMO TST - Turkey, 1

Let $a, b, c$ be the side-lengths of a triangle, $r$ be the inradius and $r_a, r_b, r_c$ be the corresponding exradius. Show that \[ \frac{a+b+c}{\sqrt{a^2+b^2+c^2}} \leq 2 \cdot \frac{\sqrt{{r_a}^2+{r_b}^2+{r_c}^2}}{r_a+r_b+r_c-3r} \]

Kyiv City MO Juniors 2003+ geometry, 2012.9.5

The triangle $ABC$ with $AB> AC$ is inscribed in a circle, the angle bisector of $\angle BAC$ intersects the side $BC$ of the triangle at the point $K$, and the circumscribed circle at the point $M$. The midline of $\Delta ABC$, which is parallel to the side $AB$, intersects $AM$ at the point $O$, the line $CO$ intersects the line $AB$ at the point $N$. Prove that a circle can be circumscribed around the quadrilateral $BNKM$. (Nagel Igor)

2005 Taiwan TST Round 2, 4

Tags: geometry
A quadrilateral $PQRS$ has an inscribed circle, the points of tangencies with sides $PQ$, $QR$, $RS$, $SP$ being $A$, $B$, $C$, $D$, respectively. Let the midpoints of $AB$, $BC$, $CD$, $DA$ be $E$, $F$, $G$, $H$, respectively. Prove that the angle between segments $PR$ and $QS$ is equal to the angle between segments $EG$ and $FH$.

1996 AMC 8, 25

A point is chosen at random from within a circular region. What is the probability that the point is closer to the center of the region than it is to the boundary of the region? $\text{(A)}\ 1/4 \qquad \text{(B)}\ 1/3 \qquad \text{(C)}\ 1/2 \qquad \text{(D)}\ 2/3 \qquad \text{(E)}\ 3/4$

1999 AIME Problems, 6

A transformation of the first quadrant of the coordinate plane maps each point $(x,y)$ to the point $(\sqrt{x},\sqrt{y}).$ The vertices of quadrilateral $ABCD$ are $A=(900,300), B=(1800,600), C=(600,1800),$ and $D=(300,900).$ Let $k$ be the area of the region enclosed by the image of quadrilateral $ABCD.$ Find the greatest integer that does not exceed $k.$

1953 Polish MO Finals, 5

Tags: geometry , algebra
From point $ O $ a car starts on a straight road and travels with constant speed $ v $. A cyclist who is located at a distance $ a $ from point $ O $ and at a distance $ b $ from the road wants to deliver a letter to this car. What is the minimum speed a cyclist should ride to reach his goal?

2010 Oral Moscow Geometry Olympiad, 1

Two equilateral triangles $ABC$ and $CDE$ have a common vertex (see fig). Find the angle between straight lines $AD$ and $BE$. [img]https://1.bp.blogspot.com/-OWpqpAqR7Zw/Xzj_fyqhbFI/AAAAAAAAMao/5y8vCfC7PegQLIUl9PARquaWypr8_luAgCLcBGAsYHQ/s0/2010%2Boral%2Bmoscow%2Bgeometru%2B8.1.gif[/img]

2003 Bosnia and Herzegovina Junior BMO TST, 4

In the trapezoid $ABCD$ ($AB \parallel DC$) the bases have lengths $a$ and $c$ ($c < a$), while the other sides have lengths $b$ and $d$. The diagonals are of lengths $m$ and $n$. It is known that $m^2 + n^2 = (a + c)^2$. a) Find the angle between the diagonals of the trapezoid. b) Prove that $a + c < b + d$. c) Prove that $ac < bd$.

2013 National Olympiad First Round, 17

Let $ABC$ be an equilateral triangle with side length $10$ and $P$ be a point inside the triangle such that $|PA|^2+ |PB|^2 + |PC|^2 = 128$. What is the area of a triangle with side lengths $|PA|,|PB|,|PC|$? $ \textbf{(A)}\ 6\sqrt 3 \qquad\textbf{(B)}\ 7 \sqrt 3 \qquad\textbf{(C)}\ 8 \sqrt 3 \qquad\textbf{(D)}\ 9 \sqrt 3 \qquad\textbf{(E)}\ 10 \sqrt 3 $

2008 Baltic Way, 19

Tags: geometry
In a circle of diameter $ 1$, some chords are drawn. The sum of their lengths is greater than $ 19$. Prove that there is a diameter intersecting at least $ 7$ chords.

Estonia Open Senior - geometry, 2004.1.3

a) Does there exist a convex quadrangle $ABCD$ satisfying the following conditions (1) $ABCD$ is not cyclic; (2) the sides $AB, BC, CD$ and $DA$ have pairwise different lengths; (3) the circumradii of the triangles $ABC, ADC, BAD$ and $BCD$ are equal? b) Does there exist such a non-convex quadrangle?

2003 All-Russian Olympiad Regional Round, 9.6

Let $I$ be the intersection point of the bisectors of triangle $ABC$. Let us denote by $A', B', C'$ the points symmetrical to $I$ wrt the sides triangle $ABC$. Prove that if a circle circumscribes around triangle $A'B'C'$ passes through vertex $B$, then $\angle ABC = 60^o$.

2023 Purple Comet Problems, 19

Tags: geometry
A trapezoid has side lengths $24$, $25$, $26$, and $27$ in some order. Find its area.

1996 IMO Shortlist, 7

Let $ABC$ be an acute triangle with circumcenter $O$ and circumradius $R$. $AO$ meets the circumcircle of $BOC$ at $A'$, $BO$ meets the circumcircle of $COA$ at $B'$ and $CO$ meets the circumcircle of $AOB$ at $C'$. Prove that \[OA'\cdot OB'\cdot OC'\geq 8R^{3}.\] Sorry if this has been posted before since this is a very classical problem, but I failed to find it with the search-function.

2021 Sharygin Geometry Olympiad, 17

Tags: geometry , incenter
Let $ABC$ be an acute-angled triangle. Points $A_0$ and $C_0$ are the midpoints of minor arcs $BC$ and $AB$ respectively. A circle passing though $A_0$ and $C_0$ meet $AB$ and $BC$ at points $P$ and $S$ , $Q$ and $R$ respectively ([i]all these points are distinct[/i]). It is known that $PQ\parallel AC$. Prove that $A_0P+C_0S=C_0Q+A_0R$.

2012 China National Olympiad, 2

Let $p$ be a prime. We arrange the numbers in ${\{1,2,\ldots ,p^2} \}$ as a $p \times p$ matrix $A = ( a_{ij} )$. Next we can select any row or column and add $1$ to every number in it, or subtract $1$ from every number in it. We call the arrangement [i]good[/i] if we can change every number of the matrix to $0$ in a finite number of such moves. How many good arrangements are there?

2009 Today's Calculation Of Integral, 467

Let the curve $ C: y\equal{}x\sqrt{9\minus{}x^2}\ (x\geq 0)$. (1) Find the maximum value of $ y$. (2) Find the area of the figure bounded by the curve $ C$ and the $ x$ axis. (3) Find the volume of the solid generated by rotation of the figure about the $ y$ axis.

1971 IMO Longlists, 28

All faces of the tetrahedron $ABCD$ are acute-angled. Take a point $X$ in the interior of the segment $AB$, and similarly $Y$ in $BC, Z$ in $CD$ and $T$ in $AD$. [b]a.)[/b] If $\angle DAB+\angle BCD\ne\angle CDA+\angle ABC$, then prove none of the closed paths $XYZTX$ has minimal length; [b]b.)[/b] If $\angle DAB+\angle BCD=\angle CDA+\angle ABC$, then there are infinitely many shortest paths $XYZTX$, each with length $2AC\sin k$, where $2k=\angle BAC+\angle CAD+\angle DAB$.

2011 Kyiv Mathematical Festival, 5

Pete claims that he can draw $4$ segments of length $1$ and a circle of radius less than $\sqrt3 /3 $ on a piece of paper, such that all segments would lie inside the circle and there would be no line that intersects each of $4$ segments. Is Pete right?

1972 IMO Longlists, 17

Tags: geometry
A solid right circular cylinder with height $h$ and base-radius $r$ has a solid hemisphere of radius $r$ resting upon it. The center of the hemisphere $O$ is on the axis of the cylinder. Let $P$ be any point on the surface of the hemisphere and $Q$ the point on the base circle of the cylinder that is furthest from $P$ (measuring along the surface of the combined solid). A string is stretched over the surface from $P$ to $Q$ so as to be as short as possible. Show that if the string is not in a plane, the straight line $PO$ when produced cuts the curved surface of the cylinder.

2015 Saudi Arabia JBMO TST, 3

Let $ABC$ be an acute-angled triangle inscribed in the circle $(O)$. Let $AD$ be the diameter of $(O)$. The points $M,N$ are chosen on $BC$ such that $OM\parallel AB, ON\parallel AC$. The lines $DM,DN$ cut $(O)$ again at $P,Q$. Prove that $BC=DP=DQ$. Tran Quang Hung, Vietnam

2013 239 Open Mathematical Olympiad, 3

Tags: geometry
The altitudes $AA_1$ and $CC_1$ of an acute-angled triangle $ABC$ intersect at point $H$. A straight line passing through $H$ parallel to line $A_1C_1$ intersects the circumscribed circles of triangles $AHC_1$ and $CHA_1$ at points $X$ and $Y$, respectively. Prove that points $X$ and $Y$ are equidistant from the midpoint of segment $BH$.

2010 China National Olympiad, 1

Tags: geometry , incenter
Two circles $\Gamma_1$ and $\Gamma_2$ meet at $A$ and $B$. A line through $B$ meets $\Gamma_1$ and $\Gamma_2$ again at $C$ and $D$ repsectively. Another line through $B$ meets $\Gamma_1$ and $\Gamma_2$ again at $E$ and $F$ repsectively. Line $CF$ meets $\Gamma_1$ and $\Gamma_2$ again at $P$ and $Q$ respectively. $M$ and $N$ are midpoints of arc $PB$ and arc $QB$ repsectively. Show that if $CD = EF$, then $C,F,M,N$ are concyclic.

1998 Canada National Olympiad, 4

Let $ABC$ be a triangle with $\angle{BAC} = 40^{\circ}$ and $\angle{ABC}=60^{\circ}$. Let $D$ and $E$ be the points lying on the sides $AC$ and $AB$, respectively, such that $\angle{CBD} = 40^{\circ}$ and $\angle{BCE} = 70^{\circ}$. Let $F$ be the point of intersection of the lines $BD$ and $CE$. Show that the line $AF$ is perpendicular to the line $BC$.

2024 Bangladesh Mathematical Olympiad, P5

Let $I$ be the incenter of $\triangle ABC$ and $P$ be a point such that $PI$ is perpendicular to $BC$ and $PA$ is parallel to $BC$. Let the line parallel to $BC$, which is tangent to the incircle of $\triangle ABC$, intersect $AB$ and $AC$ at points $Q$ and $R$ respectively. Prove that $\angle BPQ = \angle CPR$.