Found problems: 25757
1983 IMO Longlists, 67
The altitude from a vertex of a given tetrahedron intersects the opposite face in its orthocenter. Prove that all four altitudes of the tetrahedron are concurrent.
2005 Colombia Team Selection Test, 5
Let $\Gamma$ be a circle and let $d$ be a line such that $\Gamma$ and $d$ have no common points. Further, let $AB$ be a diameter of the circle $\Gamma$; assume that this diameter $AB$ is perpendicular to the line $d$, and the point $B$ is nearer to the line $d$ than the point $A$. Let $C$ be an arbitrary point on the circle $\Gamma$, different from the points $A$ and $B$. Let $D$ be the point of intersection of the lines $AC$ and $d$. One of the two tangents from the point $D$ to the circle $\Gamma$ touches this circle $\Gamma$ at a point $E$; hereby, we assume that the points $B$ and $E$ lie in the same halfplane with respect to the line $AC$. Denote by $F$ the point of intersection of the lines $BE$ and $d$. Let the line $AF$ intersect the circle $\Gamma$ at a point $G$, different from $A$.
Prove that the reflection of the point $G$ in the line $AB$ lies on the line $CF$.
2021 Adygea Teachers' Geometry Olympiad, 4
Two identical balls of radius $\sqrt{15}$ and two identical balls of a smaller radius are located on a plane so that each ball touches the other three. Find the area of the surface $S$ of the ball with the smaller radius.
Brazil L2 Finals (OBM) - geometry, 2004.2
In the figure, $ABC$ and $DAE$ are isosceles triangles ($AB = AC = AD = DE$) and the angles $BAC$ and $ADE$ have measures $36^o$.
a) Using geometric properties, calculate the measure of angle $\angle EDC$.
b) Knowing that $BC = 2$, calculate the length of segment $DC$.
c) Calculate the length of segment $AC$ .
[img]https://1.bp.blogspot.com/-mv43_pSjBxE/XqBMTfNlRKI/AAAAAAAAL2c/5ILlM0n7A2IQleu9T4yNmIY_1DtrxzsJgCK4BGAYYCw/s400/2004%2Bobm%2Bl2.png[/img]
2003 Paraguay Mathematical Olympiad, 4
Triangle $ABC$ is divided into six smaller triangles by lines that pass through the vertices and through a common point inside of the triangle. The areas of four of these triangles are indicated. Calculate the area of triangle $ABC$.
[img]https://cdn.artofproblemsolving.com/attachments/9/2/2013de890e438f5bf88af446692b495917b1ff.png[/img]
1988 IMO Longlists, 30
In the triangle $ABC$ let $D,E$ and $F$ be the mid-points of the three sides, $X,Y$ and $Z$ the feet of the three altitudes, $H$ the orthocenter, and $P,Q$ and $R$ the mid-points of the line segment joining $H$ to the three vertices. Show that the nine points $D,E,F,P,Q,R,X,Y,Z$ lie on a circle.
2016 Sharygin Geometry Olympiad, 8
A criminal is at point $X$, and three policemen at points $A, B$ and $C$ block him up, i.e. the point $X$ lies inside the triangle $ABC$. Each evening one of the policemen is replaced in the following way: a new policeman takes the position equidistant from three former policemen, after this one of the former policemen goes away so that three remaining policemen block up the criminal too. May the policemen after some time occupy again the points $A, B$ and $C$ (it is known that at any moment $X$ does not lie on a side of the triangle)?
by V.Protasov
2016 Fall CHMMC, 15
In a $5 \times 5$ grid of squares, how many nonintersecting pairs rectangles of rectangles are there? (Note sharing a vertex or edge still means the rectangles intersect.)
1990 Turkey Team Selection Test, 4
Let $ABCD$ be a convex quadrilateral such that \[\begin{array}{rl} E,F \in [AB],& AE = EF = FB \\ G,H \in [BC],& BG = GH = HC \\ K,L \in [CD],& CK = KL = LD \\ M,N \in [DA],& DM = MN = NA \end{array}\] Let \[[NG] \cap [LE] = \{P\}, [NG]\cap [KF] = \{Q\},\] \[{[}MH] \cap [KF] = \{R\}, [MH]\cap [LE]=\{S\}\]
Prove that [list=a][*]$Area(ABCD) = 9 \cdot Area(PQRS)$ [*] $NP=PQ=QG$ [/list]
2022 Novosibirsk Oral Olympiad in Geometry, 6
Anton has an isosceles right triangle, which he wants to cut into $9$ triangular parts in the way shown in the picture. What is the largest number of the resulting $9$ parts that can be equilateral triangles?
A more formal description of partitioning. Let triangle $ABC$ be given. We choose two points on its sides so that they go in the order $AC_1C_2BA_1A_2CB_1B_2$, and no two coincide. In addition, the segments $C_1A_2$, $A_1B_2$ and $B_1C_2$ must intersect at one point. Then the partition is given by segments $C_1A_2$, $A_1B_2$, $B_1C_2$, $A_1C_2$, $B_1A_2$ and $C_1B_2$.
[img]https://cdn.artofproblemsolving.com/attachments/0/5/5dd914b987983216342e23460954d46755d351.png[/img]
2022 China Team Selection Test, 1
In a cyclic convex hexagon $ABCDEF$, $AB$ and $DC$ intersect at $G$, $AF$ and $DE$ intersect at $H$. Let $M, N$ be the circumcenters of $BCG$ and $EFH$, respectively. Prove that the $BE$, $CF$ and $MN$ are concurrent.
Kyiv City MO 1984-93 - geometry, 1985.7.3
$O$ is the point of intersection of the diagonals of the convex quadrilateral $ABCD$. It is known that the areas of triangles $AOB, BOC, COD$ and $DOA$ are expressed in natural numbers. Prove that the product of these areas cannot end in $1985$.
2011 Oral Moscow Geometry Olympiad, 3
A non-isosceles trapezoid $ABCD$ ($AB // CD$) is given. An arbitrary circle passing through points $A$ and $B$ intersects the sides of the trapezoid at points $P$ and $Q$, and the intersect the diagonals at points $M$ and $N$. Prove that the lines $PQ, MN$ and $CD$ are concurrent.
2010 Mediterranean Mathematics Olympiad, 3
Let $A'\in(BC),$ $B'\in(CA),C'\in(AB)$ be the points of tangency of the excribed circles of triangle $\triangle ABC$ with the sides of $\triangle ABC.$ Let $R'$ be the circumradius of triangle $\triangle A'B'C'.$ Show that \[
R'=\frac{1}{2r}\sqrt{2R\left(2R-h_{a}\right)\left(2R-h_{b}\right)\left(2R-h_{c}\right)}\]
where as usual, $R$ is the circumradius of $\triangle ABC,$ r is the inradius of $\triangle ABC,$ and $h_{a},h_{b},h_{c}$ are the lengths of altitudes of $\triangle ABC.$
2010 All-Russian Olympiad Regional Round, 11.5
The angles of the triangle $\alpha, \beta, \gamma$ satisfy the inequalities $$\sin \alpha > \cos \beta, \sin \beta > \cos \gamma, \sin \gamma > \cos \alpha. $$Prove that the trαiangle is acute-angled.
2022 Balkan MO, 1
Let $ABC$ be an acute triangle such that $CA \neq CB$ with circumcircle $\omega$ and circumcentre $O$. Let $t_A$ and $t_B$ be the tangents to $\omega$ at $A$ and $B$ respectively, which meet at $X$. Let $Y$ be the foot of the perpendicular from $O$ onto the line segment $CX$. The line through $C$ parallel to line $AB$ meets $t_A$ at $Z$. Prove that the line $YZ$ passes through the midpoint of the line segment $AC$.
[i]Proposed by Dominic Yeo, United Kingdom[/i]
Russian TST 2019, P2
Let $I$ be an incenter of $\triangle ABC$. Denote $D, \ S \neq A$ intersections of $AI$ with $BC, \ O(ABC)$ respectively. Let $K, \ L$ be incenters of $\triangle DSB, \ \triangle DCS$. Let $P$ be a reflection of $I$ with the respect to $KL$. Prove that $BP \perp CP$.
2002 India Regional Mathematical Olympiad, 1
In an acute triangle $ABC$ points $D,E,F$ are located on the sides $BC,CA, AB$ such that \[ \frac{CD}{CE} = \frac{CA}{CB} , \frac{AE}{AF} = \frac{AB}{AC} , \frac{BF}{FD} = \frac{BC}{BA} \] Prove that $AD,BE,CF$ are altitudes of triangle $ABC$.
2019 AMC 10, 16
The figure below shows $13$ circles of radius $1$ within a larger circle. All the intersections occur at points of tangency. What is the area of the region, shaded in the figure, inside the larger circle but outside all the circles of radius $1 ?$
[asy]unitsize(20);filldraw(circle((0,0),2*sqrt(3)+1),rgb(0.5,0.5,0.5));filldraw(circle((-2,0),1),white);filldraw(circle((0,0),1),white);filldraw(circle((2,0),1),white);filldraw(circle((1,sqrt(3)),1),white);filldraw(circle((3,sqrt(3)),1),white);filldraw(circle((-1,sqrt(3)),1),white);filldraw(circle((-3,sqrt(3)),1),white);filldraw(circle((1,-1*sqrt(3)),1),white);filldraw(circle((3,-1*sqrt(3)),1),white);filldraw(circle((-1,-1*sqrt(3)),1),white);filldraw(circle((-3,-1*sqrt(3)),1),white);filldraw(circle((0,2*sqrt(3)),1),white);filldraw(circle((0,-2*sqrt(3)),1),white);[/asy]
$\textbf{(A) } 4 \pi \sqrt{3} \qquad\textbf{(B) } 7 \pi \qquad\textbf{(C) } \pi(3\sqrt{3} +2) \qquad\textbf{(D) } 10 \pi (\sqrt{3} - 1) \qquad\textbf{(E) } \pi(\sqrt{3} + 6)$
2023 IFYM, Sozopol, 7
The incircle of triangle $ABC$ touches sides $BC$, $AC$, and $AB$ at points $A_1$, $B_1$, and $C_1$. The line through the midpoints of segments $AB_1$ and $AC_1$ intersects the tangent at $A$ to the circumcircle of triangle $ABC$ at point $A_2$. Points $B_2$ and $C_2$ are defined similarly. Prove that points $A_2$, $B_2$, and $C_2$ lie on a line.
2005 AMC 8, 25
A square with side length 2 and a circle share the same center. The total area of the regions that are inside the circle and outside the square is equal to the total area of the regions that are outside the circle and inside the square. What is the radius of the circle?
[asy]defaultpen(linewidth(0.8));pair a=(4,4), b=(0,0), c=(0,4), d=(4,0), o=(2,2);
draw(a--d--b--c--cycle);
draw(circle(o, 2.5));[/asy]
$ \textbf{(A)}\ \frac{2}{\sqrt{\pi}} \qquad \textbf{(B)}\ \frac{1\plus{}\sqrt{2}}{2} \qquad \textbf{(C)}\ \frac{3}{2} \qquad \textbf{(D)}\ \sqrt{3} \qquad \textbf{(E)}\ \sqrt{\pi}$
2014 Belarus Team Selection Test, 3
Point $L$ is marked on the side $AB$ of a triangle $ABC$. The incircle of the triangle $ABC$ meets the segment $CL$ at points $P$ and $Q$ .Is it possible that the equalities $CP = PQ = QL$ hold if $CL$ is
a) the median?
b) the bisector?
c) the altitude?
d) the segment joining vertex $C$ with the point $L$ of tangency of the excircle of the triangie $ABC$ with $AB$ ?
(I. Gorodnin)
Kvant 2020, M2611
In $\triangle ABC$ with $AB\neq{AC}$ let $M$ be the midpoint of $AB$, let $K$ be the midpoint of the arc $BAC$ in the circumcircle of $\triangle ABC$, and let the perpendicular bisector of $AC$ meet the bisector of $\angle BAC$ at $P$ . Prove that $A, M, K, P$ are concyclic.
1974 Spain Mathematical Olympiad, 4
All three sides of an equilateral triangle are assumed to be reflective (except in the vertices), in such a way that they reflect the rays of light located in their plane, that fall on them and that come out of an interior point of the triangle.
Determine the path of a ray of light that, starting from a vertex of the triangle reach another vertex of the same after reflecting successively on the three sides. Calculate the length of the path followed by the light assuming that the side of the triangle measures $1$ m.
2023 Romania National Olympiad, 3
We consider triangle $ABC$ and variables points $M$ on the half-line $BC$, $N$ on the half-line $CA$, and $P$ on the half-line $AB$, each start simultaneously from $B,C$ and respectively $A$, moving with constant speeds $ v_1, v_2, v_3 > 0 $, where $v_1$, $v_2$, and $v_3$ are expressed in the same unit of measure.
a) Given that there exist three distinct moments in which triangle $MNP$ is equilateral, prove that triangle $ABC$ is equilateral and that $v_1 = v_2 = v_3$.
b) Prove that if $v_1 = v_2 = v_3$ and there exists a moment in which triangle $MNP$ is equilateral, then triangle $ABC$ is also equilateral.