This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

1987 China Team Selection Test, 1

Given a convex figure in the Cartesian plane that is symmetric with respect of both axis, we construct a rectangle $A$ inside it with maximum area (over all posible rectangles). Then we enlarge it with center in the center of the rectangle and ratio lamda such that is covers the convex figure. Find the smallest lamda such that it works for all convex figures.

2015 Sharygin Geometry Olympiad, P20

Given are a circle and an ellipse lying inside it with focus $C$. Find the locus of the circumcenters of triangles $ABC$, where $AB$ is a chord of the circle touching the ellipse.

2002 India IMO Training Camp, 1

Let $A,B$ and $C$ be three points on a line with $B$ between $A$ and $C$. Let $\Gamma_1,\Gamma_2, \Gamma_3$ be semicircles, all on the same side of $AC$ and with $AC,AB,BC$ as diameters, respectively. Let $l$ be the line perpendicular to $AC$ through $B$. Let $\Gamma$ be the circle which is tangent to the line $l$, tangent to $\Gamma_1$ internally, and tangent to $\Gamma_3$ externally. Let $D$ be the point of contact of $\Gamma$ and $\Gamma_3$. The diameter of $\Gamma$ through $D$ meets $l$ in $E$. Show that $AB=DE$.

1995 Miklós Schweitzer, 10

Let $X =\{ X_1 , X_2 , ...\}$ be a countable set of points in space. Show that there is a positive sequence $\{a_k\}$ such that for any point $Z\not\in X$ the distance between the point Z and the set $\{X_1,X_2 , ...,X_k\}$ is at least $a_k$ for infinitely many k.

2000 Irish Math Olympiad, 2

In a cyclic quadrilateral $ ABCD, a,b,c,d$ are its side lengths, $ Q$ its area, and $ R$ its circumradius. Prove that: $ R^2\equal{}\frac{(ab\plus{}cd)(ac\plus{}bd)(ad\plus{}bc)}{16Q^2}$. Deduce that $ R \ge \frac{(abcd)^{\frac{3}{4}}}{Q\sqrt{2}}$ with equality if and only if $ ABCD$ is a square.

2006 Tournament of Towns, 4

Quadrilateral $ABCD$ is a cyclic, $AB = AD$. Points $M$ and $N$ are chosen on sides $BC$ and $CD$ respectfully so that $\angle MAN =1/2 (\angle BAD)$. Prove that $MN = BM + ND$. [i](5 points)[/i]

2014 IPhOO, 3

Consider a charged capacitor made with two square plates of side length $L$, uniformly charged, and separated by a very small distance $d$. The EMF across the capacitor is $\xi$. One of the plates is now rotated by a very small angle $\theta$ to the original axis of the capacitor. Find an expression for the difference in charge between the two plates of the capacitor, in terms of (if necessary) $d$, $\theta$, $\xi$, and $L$. Also, approximate your expression by transforming it to algebraic form: i.e. without any non-algebraic functions. For example, logarithms and trigonometric functions are considered non-algebraic. Assume $ d << L $ and $ \theta \approx 0 $. $\emph{Hint}$: You may assume that $ \frac {\theta L}{d} $ is also very small. [i]Problem proposed by Trung Phan[/i] [hide="Clarification"] There are two possible ways to rotate the capacitor. Both were equally scored but this is what was meant: [asy]size(6cm); real h = 7; real w = 2; draw((-w,0)--(-w,h)); draw((0,0)--(0,h), dashed); draw((0,0)--h*dir(64)); draw(arc((0,0),2,64,90)); label("$\theta$", 2*dir(77), dir(77)); [/asy] [/hide]

2002 Stanford Mathematics Tournament, 3

Tags: geometry , ratio
A clockmaker wants to design a clock such that the area swept by each hand (second, minute, and hour) in one minute is the same (all hands move continuously). What is the length of the hour hand divided by the length of the second hand?

2025 Korea - Final Round, P3

Tags: geometry
An acute triangle $\bigtriangleup ABC$ is given which $BC>CA>AB$. $I$ is the interior and the incircle of $\bigtriangleup ABC$ meets $BC, CA, AB$ at $D,E,F$. $AD$ and $BE$ meet at $P$. Let $l_{1}$ be a tangent from D to the circumcircle of $\bigtriangleup DIP$, and define $l_{2}$ and $l_{3}$ on $E$ and $F$, respectively. Prove $l_{1},l_{2},l_{3}$ meet at one point.

1980 Dutch Mathematical Olympiad, 3

Given is the non-right triangle $ABC$. $D,E$ and $F$ are the feet of the respective altitudes from $A,B$ and $C$. $P,Q$ and $R$ are the respective midpoints of the line segments $EF$, $FD$ and $DE$. $p \perp BC$ passes through $P$, $q \perp CA$ passes through $Q$ and $r \perp AB$ passes through $R$. Prove that the lines $p, q$ and $r$ pass through one point.

2020 AIME Problems, 6

Tags: geometry , sphere
A flat board has a circular hole with radius $1$ and a circular hole with radius $2$ such that the distance between the centers of the two holes is 7. Two spheres with equal radii sit in the two holes such that the spheres are tangent to each other. The square of the radius of the spheres is $\frac{m}n$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

MMPC Part II 1996 - 2019, 2015

[b]p1.[/b] Consider a right triangle with legs of lengths $a$ and $b$ and hypotenuse of length $c$ such that the perimeter of the right triangle is numerically (ignoring units) equal to its area. Prove that there is only one possible value of $a + b - c$, and determine that value. [b]p2.[/b] Last August, Jennifer McLoud-Mann, along with her husband Casey Mann and an undergraduate David Von Derau at the University of Washington, Bothell, discovered a new tiling pattern of the plane with a pentagon. This is the fifteenth pattern of using a pentagon to cover the plane with no gaps or overlaps. It is unknown whether other pentagons tile the plane, or even if the number of patterns is finite. Below is a portion of this new tiling pattern. [img]https://services.artofproblemsolving.com/download.php?id=YXR0YWNobWVudHMvOS8xLzM4M2RjZDEzZTliYTlhYTJkZDU4YTA4ZGMwMTA0MzA5ODk1NjI0LnBuZw==&rn=bW1wYyAyMDE1LnBuZw==[/img] Determine the five angles (in degrees) of the pentagon $ABCDE$ used in this tiling. Explain your reasoning, and give the values you determine for the angles at the bottom. [b]p3.[/b] Let $f(x) =\sqrt{2019 + 4\sqrt{2015}} +\sqrt{2015} x$. Find all rational numbers $x$ such that $f(x)$ is a rational number. [b]p4.[/b] Alice has a whiteboard and a blackboard. The whiteboard has two positive integers on it, and the blackboard is initially blank. Alice repeats the following process. $\bullet$ Let the numbers on the whiteboard be $a$ and $b$, with $a \le b$. $\bullet$ Write $a^2$ on the blackboard. $\bullet$ Erase $b$ from the whiteboard and replace it with $b - a$. For example, if the whiteboard began with 5 and 8, Alice first writes $25$ on the blackboard and changes the whiteboard to $5$ and $3$. Her next move is to write $9$ on the blackboard and change the whiteboard to $2$ and $3$. Alice stops when one of the numbers on the whiteboard is 0. At this point the sum of the numbers on the blackboard is $2015$. a. If one of the starting numbers is $1$, what is the other? b. What are all possible starting pairs of numbers? [b]p5.[/b] Professor Beatrix Quirky has many multi-volume sets of books on her shelves. When she places a numbered set of $n$ books on her shelves, she doesn’t necessarily place them in order with book $1$ on the left and book $n$ on the right. Any volume can be placed at the far left. The only rule is that, except the leftmost volume, each volume must have a volume somewhere to its left numbered either one more or one less. For example, with a series of six volumes, Professor Quirky could place them in the order $123456$, or $324561$, or $564321$, but not $321564$ (because neither $4$ nor $6$ is to the left of $5$). Let’s call a sequence of numbers a [i]quirky [/i] sequence of length $n$ if: 1. the sequence contains each of the numbers from $1$ to $n$, once each, and 2. if $k$ is not the first term of the sequence, then either $k + 1$ or $k - 1$ occurs somewhere before $k$ in the sequence. Let $q_n$ be the number of quirky sequences of length $n$. For example, $q_3 = 4$ since the quirky sequences of length $3$ are $123$, $213$, $231$, and $321$. a. List all quirky sequences of length $4$. b. Find an explicit formula for $q_n$. Prove that your formula is correct. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2020 JHMT, 9

Tags: geometry
Two points $J$ and $H$ lie $26$ units apart on a given plane. Let $M$ be the locus of points $T$ on this plane such that $JT^2 + HT^2 = 2020$. Then, M encloses a region on the plane with area $a$ and perimeter $p$. If $q$ and $r$ are coprime positive integers and $\frac{a}{p} = \frac{q}{r}$ , then compute $q + r$.

2017 Yasinsky Geometry Olympiad, 4

Diagonals of trapezium $ABCD$ are mutually perpendicular and the midline of the trapezium is $5$. Find the length of the segment that connects the midpoints of the bases of the trapezium.

KoMaL A Problems 2024/2025, A. 902

Tags: geometry
In triangle $ABC$, interior point $D$ is chosen such that triangle $BCD$ is equilateral. Let $E$ be the isogonal conjugate of point $D$ with respect to triangle $ABC$. Define point $P$ on the ray $AB$ such that $AP=BE$. Similarly, define point $Q$ on the ray $AC$ such that $AQ=CE$. Prove that line $AD$ bisects segment $PQ$. [i]Proposed by Áron Bán-Szabó, Budapest[/i]

2022 Puerto Rico Team Selection Test, 3

Let $\omega$ be a circle with center $O$ and diameter $AB$. A circle with center at $B$ intersects $\omega$ at C and $AB$ at $D$. The line $CD$ intersects $\omega$ at a point $E$ ($E\ne C$). The intersection of lines $OE$ and $BC$ is $F$. (a) Prove that triangle $OBF$ is isosceles. (b) If $D$ is the midpoint of $OB$, find the value of the ratio $\frac{FB}{BD}$.

2024 New Zealand MO, 3

A rectangular sheet of paper is folded so that one corner lies on top of the corner diagonally opposite. The resulting shape is a pentagon whose area is $20\%$ one-sheet thick, and $80\%$ two-sheets-thick. Determine the ratio of the two sides of the original sheet of paper.

1999 French Mathematical Olympiad, Problem 5

Tags: triangle , geometry
Prove that the points symmetric to the vertices of a triangle with respect to the opposite side are collinear if and only if the distance from the orthocenter to the circumcenter is twice the circumradius.

2024 ELMO Shortlist, G6

In triangle $ABC$ with $AB<AC$ and $AB+AC=2BC$, let $M$ be the midpoint of $\overline{BC}$. Choose point $P$ on the extension of $\overline{BA}$ past $A$ and point $Q$ on segment $\overline{AC}$ such that $M$ lies on $\overline{PQ}$. Let $X$ be on the opposite side of $\overline{AB}$ from $C$ such that $\overline{AX} \parallel \overline{BC}$ and $AX=AP=AQ$. Let $\overline{BX}$ intersect the circumcircle of $BMQ$ again at $Y \neq B$, and let $\overline{CX}$ intersect the circumcircle of $CMP$ again at $Z \neq C$. Prove that $A$, $Y$, and $Z$ are collinear. [i]Tiger Zhang[/i]

2015 Sharygin Geometry Olympiad, 3

Tags: geometry
Let $A_1$, $B_1$ and $C_1$ be the midpoints of sides $BC$, $CA$ and $AB$ of triangle $ABC$, respectively. Points $B_2$ and $C_2$ are the midpoints of segments $BA_1$ and $CA_1$ respectively. Point $B_3$ is symmetric to $C_1$ wrt $B$, and $C_3$ is symmetric to $B_1$ wrt $C$. Prove that one of common points of circles $BB_2B_3$ and $CC_2C_3$ lies on the circumcircle of triangle $ABC$.

1987 India National Olympiad, 8

Three congruent circles have a common point $ O$ and lie inside a given triangle. Each circle touches a pair of sides of the triangle. Prove that the incentre and the circumcentre of the triangle and the common point $ O$ are collinear.

2011 District Olympiad, 1

On the sides $ AB,BC,CD,DA $ of the parallelogram $ ABCD, $ consider the points $ M,N,P, $ respectively, $ Q, $ such that $ \overrightarrow{MN} +\overrightarrow{QP} =\overrightarrow{AC} . $ Show that $ \overrightarrow{PN} +\overrightarrow{QM} = \overrightarrow{DB} . $

2019 Durer Math Competition Finals, 1

Find the number of non-isosceles triangles (up to congruence) with integral side lengths, in which the sum of the two shorter sides is $19$.

2016 Czech-Polish-Slovak Junior Match, 1

Let $ABC$ be a right-angled triangle with hypotenuse $AB$. Denote by $D$ the foot of the altitude from $C$. Let $Q, R$, and $P$ be the midpoints of the segments $AD, BD$, and $CD$, respectively. Prove that $\angle AP B + \angle QCR = 180^o$. Czech Republic

2011 Tournament of Towns, 3

In triangle $ABC$, points $A_1,B_1,C_1$ are bases of altitudes from vertices $A,B,C$, and points $C_A,C_B$ are the projections of $C_1$ to $AC$ and $BC$ respectively. Prove that line $C_AC_B$ bisects the segments $C_1A_1$ and $C_1B_1$.