This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2007 National Olympiad First Round, 21

Tags: geometry
Let $ABCD$ be a quadrilateral such that $m(\widehat{A}) = m(\widehat{D}) = 90^\circ$. Let $M$ be the midpoint of $[DC]$. If $AC\perp BM$, $|DC|=12$, and $|AB|=9$, then what is $|AD|$? $ \textbf{(A)}\ 4 \qquad\textbf{(B)}\ 6 \qquad\textbf{(C)}\ 9 \qquad\textbf{(D)}\ 12 \qquad\textbf{(E)}\ \text{None of the above} $

2008 Moldova Team Selection Test, 3

Let $ \omega$ be the circumcircle of $ ABC$ and let $ D$ be a fixed point on $ BC$, $ D\neq B$, $ D\neq C$. Let $ X$ be a variable point on $ (BC)$, $ X\neq D$. Let $ Y$ be the second intersection point of $ AX$ and $ \omega$. Prove that the circumcircle of $ XYD$ passes through a fixed point.

2025 Al-Khwarizmi IJMO, 2

Tags: geometry
Let $ABCD$ be a convex quadrilateral with \[\angle ADC = 90^\circ, \ \ \angle BCD = \angle ABC > 90^\circ, \mbox{ and } AB = 2CD.\] The line through \(C\), parallel to \(AD\), intersects the external angle bisector of \(\angle ABC\) at point \(T\). Prove that the angles $\angle ATB$, $\angle TBC$, $\angle BCD$, $\angle CDA$, $\angle DAT$ can be divided into two groups, so that the angles in each group have a sum of $270^{\circ}$. [i] Miroslav Marinov, Bulgaria [/i]

2005 IberoAmerican Olympiad For University Students, 4

A variable tangent $t$ to the circle $C_1$, of radius $r_1$, intersects the circle $C_2$, of radius $r_2$ in $A$ and $B$. The tangents to $C_2$ through $A$ and $B$ intersect in $P$. Find, as a function of $r_1$ and $r_2$, the distance between the centers of $C_1$ and $C_2$ such that the locus of $P$ when $t$ varies is contained in an equilateral hyperbola. [b]Note[/b]: A hyperbola is said to be [i]equilateral[/i] if its asymptotes are perpendicular.

2002 France Team Selection Test, 2

Let $ ABC$ be a non-equilateral triangle. Denote by $ I$ the incenter and by $ O$ the circumcenter of the triangle $ ABC$. Prove that $ \angle AIO\leq\frac{\pi}{2}$ holds if and only if $ 2\cdot BC\leq AB\plus{}AC$.

2022 Benelux, 3

Tags: geometry
Let $ABC$ be a scalene acute triangle. Let $B_1$ be the point on ray $[AC$ such that $|AB_1|=|BB_1|$. Let $C_1$ be the point on ray $[AB$ such that $|AC_1|=|CC_1|$. Let $B_2$ and $C_2$ be the points on line $BC$ such that $|AB_2|=|CB_2|$ and $|BC_2|=|AC_2|$. Prove that $B_1$, $C_1$, $B_2$, $C_2$ are concyclic.

2017 ELMO Shortlist, 3

Call the ordered pair of distinct circles $(\omega, \gamma)$ scribable if there exists a triangle with circumcircle $\omega$ and incircle $\gamma$. Prove that among $n$ distinct circles there are at most $(n/2)^2$ scribable pairs. [i]Proposed by Daniel Liu

Cono Sur Shortlist - geometry, 2020.G1.4

Let $ABC$ be an acute scalene triangle. $D$ and $E$ are variable points in the half-lines $AB$ and $AC$ (with origin at $A$) such that the symmetric of $A$ over $DE$ lies on $BC$. Let $P$ be the intersection of the circles with diameter $AD$ and $AE$. Find the locus of $P$ when varying the line segment $DE$.

2017 Sharygin Geometry Olympiad, 4

Tags: geometry
Given triangle $ABC$ and its incircle $\omega$ prove you can use just a ruler and drawing at most 8 lines to construct points$A',B',C'$ on $\omega$ such that $A,B',C'$ and $B,C',A'$ and $C,A',B'$ are collinear.

2021 JHMT HS, 5

For real numbers $x,$ let $T_x$ be the triangle with vertices $(5, 5^3),$ $(8, 8^3),$ and $(x, x^3)$ in $\mathbb{R}^2.$ Over all $x$ in the interval $[5, 8],$ the area of the triangle $T_x$ is maximized at $x = \sqrt{n},$ for some positive integer $n.$ Compute $n.$

2012 AMC 12/AHSME, 19

A unit cube has vertices $P_1, P_2, P_3, P_4, P_1', P_2', P_3'$, and $P_4'$. Vertices $P_2, P_3$, and $P_4$ are adjacent to $P_1$, and for $1\leq i\leq 4$, vertices $P_i$ and $P_i'$ are opposite to each other. A regular octahedron has one vertex in each of the segments $P_1P_2, P_1P_3, P_1P_4, P_1'P_2', P_1'P_3'$, and $P_1'P_4'$. What is the octahedron's side length? [asy] import three; size(7.5cm); triple eye = (-4, -8, 3); currentprojection = perspective(eye); triple[] P = {(1, -1, -1), (-1, -1, -1), (-1, 1, -1), (-1, -1, 1), (1, -1, -1)}; // P[0] = P[4] for convenience triple[] Pp = {-P[0], -P[1], -P[2], -P[3], -P[4]}; // draw octahedron triple pt(int k){ return (3*P[k] + P[1])/4; } triple ptp(int k){ return (3*Pp[k] + Pp[1])/4; } draw(pt(2)--pt(3)--pt(4)--cycle, gray(0.6)); draw(ptp(2)--pt(3)--ptp(4)--cycle, gray(0.6)); draw(ptp(2)--pt(4), gray(0.6)); draw(pt(2)--ptp(4), gray(0.6)); draw(pt(4)--ptp(3)--pt(2), gray(0.6) + linetype("4 4")); draw(ptp(4)--ptp(3)--ptp(2), gray(0.6) + linetype("4 4")); // draw cube for(int i = 0; i < 4; ++i){ draw(P[1]--P[i]); draw(Pp[1]--Pp[i]); for(int j = 0; j < 4; ++j){ if(i == 1 || j == 1 || i == j) continue; draw(P[i]--Pp[j]); draw(Pp[i]--P[j]); } dot(P[i]); dot(Pp[i]); dot(pt(i)); dot(ptp(i)); } label("$P_1$", P[1], dir(P[1])); label("$P_2$", P[2], dir(P[2])); label("$P_3$", P[3], dir(-45)); label("$P_4$", P[4], dir(P[4])); label("$P'_1$", Pp[1], dir(Pp[1])); label("$P'_2$", Pp[2], dir(Pp[2])); label("$P'_3$", Pp[3], dir(-100)); label("$P'_4$", Pp[4], dir(Pp[4])); [/asy] $ \textbf{(A)}\ \frac{3\sqrt{2}}{4}\qquad\textbf{(B)}\ \frac{7\sqrt{6}}{16}\qquad\textbf{(C)}\ \frac{\sqrt{5}}{2}\qquad\textbf{(D)}\ \frac{2\sqrt{3}}{3}\qquad\textbf{(E)}\ \frac{\sqrt{6}}{2} $

1990 All Soviet Union Mathematical Olympiad, 524

$A, B, C$ are adjacent vertices of a regular $2n$-gon and $D$ is the vertex opposite to $B$ (so that $BD$ passes through the center of the $2n$-gon). $X$ is a point on the side $AB$ and $Y$ is a point on the side $BC$ so that $XDY = \frac{\pi}{2n}$. Show that $DY$ bisects $\angle XYC$.

1966 IMO Longlists, 33

Given two internally tangent circles; in the bigger one we inscribe an equilateral triangle. From each of the vertices of this triangle, we draw a tangent to the smaller circle. Prove that the length of one of these tangents equals the sum of the lengths of the two other tangents.

1969 Spain Mathematical Olympiad, 4

Tags: area , octagon , square , geometry
A circle of radius $R$ is divided into $8$ equal parts. The points of division are denoted successively by $A, B, C, D, E, F , G$ and $H$. Find the area of the square formed by drawing the chords $AF$ , $BE$, $CH$ and $DG$.

2014 Contests, 1

Let $ABC$ an acute triangle and $\Gamma$ its circumcircle. The bisector of $BAC$ intersects $\Gamma$ at $M\neq A$. A line $r$ parallel to $BC$ intersects $AC$ at $X$ and $AB$ at $Y$. Also, $MX$ and $MY$ intersect $\Gamma$ again at $S$ and $T$, respectively. If $XY$ and $ST$ intersect at $P$, prove that $PA$ is tangent to $\Gamma$.

2017 Czech-Polish-Slovak Match, 1

Let ${ABC}$ be a triangle. Line [i]l[/i] is parallel to ${BC}$ and it respectively intersects side ${AB}$ at point ${D}$, side ${AC}$ at point ${E}$, and the circumcircle of the triangle ${ABC}$ at points ${F}$ and ${G}$, where points ${F,D,E,G}$ lie in this order on [i]l[/i]. The circumcircles of triangles ${FEB}$ and ${DGC}$ intersect at points ${P}$ and ${Q}$. Prove that points ${A, P,Q}$ are collinear. (Slovakia)

2010 India IMO Training Camp, 1

Let $ABC$ be a triangle in which $BC<AC$. Let $M$ be the mid-point of $AB$, $AP$ be the altitude from $A$ on $BC$, and $BQ$ be the altitude from $B$ on to $AC$. Suppose that $QP$ produced meets $AB$ (extended) at $T$. If $H$ is the orthocenter of $ABC$, prove that $TH$ is perpendicular to $CM$.

Novosibirsk Oral Geo Oly VIII, 2016.2

Tags: angle , geometry
Bisector of one angle of triangle $ABC$ is equal to the bisector of its external angle at the same vertex (see figure). Find the difference between the other two angles of the triangle. [img]https://cdn.artofproblemsolving.com/attachments/c/3/d2efeb65544c45a15acccab8db05c8314eb5f2.png[/img]

2002 Estonia National Olympiad, 2

Inside an equilateral triangle there is a point whose distances from the sides of the triangle are $3, 4$ and $5$. Find the area of the triangle.

1963 Poland - Second Round, 2

In the plane there is a quadrilateral $ ABCD $ and a point $ M $. Construct a parallelogram with center $ M $ and its vertices lying on the lines $ AB $, $ BC $, $ CD $, $ DA $.

2007 Iran MO (3rd Round), 7

A ring is the area between two circles with the same center, and width of a ring is the difference between the radii of two circles. [img]http://i18.tinypic.com/6cdmvi8.png[/img] a) Can we put uncountable disjoint rings of width 1(not necessarily same) in the space such that each two of them can not be separated. [img]http://i19.tinypic.com/4qgx30j.png[/img] b) What's the answer if 1 is replaced with 0?

2010 Regional Competition For Advanced Students, 3

Let $\triangle ABC$ be a triangle and let $D$ be a point on side $\overline{BC}$. Let $U$ and $V$ be the circumcenters of triangles $\triangle ABD$ and $\triangle ADC$, respectively. Show, that $\triangle ABC$ and $\triangle AUV$ are similar. [i](41th Austrian Mathematical Olympiad, regional competition, problem 3)[/i]

2008 Harvard-MIT Mathematics Tournament, 10

Let $ ABC$ be an equilateral triangle with side length 2, and let $ \Gamma$ be a circle with radius $ \frac {1}{2}$ centered at the center of the equilateral triangle. Determine the length of the shortest path that starts somewhere on $ \Gamma$, visits all three sides of $ ABC$, and ends somewhere on $ \Gamma$ (not necessarily at the starting point). Express your answer in the form of $ \sqrt p \minus{} q$, where $ p$ and $ q$ are rational numbers written as reduced fractions.

1997 Brazil Team Selection Test, Problem 5

Let $ABC$ be an acute-angled triangle with incenter $I$. Consider the point $A_1$ on $AI$ different from $A$, such that the midpoint of $AA_1$ lies on the circumscribed circle of $ABC$. Points $B_1$ and $C_1$ are defined similarly. (a) Prove that $S_{A_1B_1C_1}=(4R+r)p$, where $p$ is the semi-perimeter, $R$ is the circumradius and $r$ is the inradius of $ABC$. (b) Prove that $S_{A_1B_1C_1}\ge9S_{ABC}$.

2005 Junior Balkan Team Selection Tests - Romania, 6

Let $ABC$ be an equilateral triangle and $M$ be a point inside the triangle. We denote by $A'$, $B'$, $C'$ the projections of the point $M$ on the sides $BC$, $CA$ and $AB$ respectively. Prove that the lines $AA'$, $BB'$ and $CC'$ are concurrent if and only if $M$ belongs to an altitude of the triangle.