Found problems: 1389
2010 Indonesia TST, 4
Let $ ABC$ be an acute-angled triangle such that there exist points $ D,E,F$ on side $ BC,CA,AB$, respectively such that the inradii of triangle $ AEF,BDF,CDE$ are all equal to $ r_0$. If the inradii of triangle $ DEF$ and $ ABC$ are $ r$ and $ R$, respectively, prove that \[ r\plus{}r_0\equal{}R.\]
[i]Soewono, Bandung[/i]
1990 IMO Longlists, 36
Let $ ABC$ be a triangle, and let the angle bisectors of its angles $ CAB$ and $ ABC$ meet the sides $ BC$ and $ CA$ at the points $ D$ and $ F$, respectively. The lines $ AD$ and $ BF$ meet the line through the point $ C$ parallel to $ AB$ at the points $ E$ and $ G$ respectively, and we have $ FG \equal{} DE$. Prove that $ CA \equal{} CB$.
[i]Original formulation:[/i]
Let $ ABC$ be a triangle and $ L$ the line through $ C$ parallel to the side $ AB.$ Let the internal bisector of the angle at $ A$ meet the side $ BC$ at $ D$ and the line $ L$ at $ E$ and let the internal bisector of the angle at $ B$ meet the side $ AC$ at $ F$ and the line $ L$ at $ G.$ If $ GF \equal{} DE,$ prove that $ AC \equal{} BC.$
The Golden Digits 2024, P3
Let $ABC$ be a scalene acute triangle with incenter $I$ and circumcircle $\Omega$. $M$ is the midpoint of small arc $BC$ on$\Omega$ and $N$ is the projection of $I$ onto the line passing through the midpoints of $AB$ and $AC$. A circle $\omega$ with center $Q$ is internally tangent to $\Omega$ at $A$, and touches segment $BC$. If the circle with diameter $IM$ meets $\Omega$ again at $J$, prove that $JI$ bisects $\angle QJN$.
[i]Proposed by David Anghel[/i]
1996 APMO, 3
If $ABCD$ is a cyclic quadrilateral, then prove that the incenters of the triangles $ABC$, $BCD$, $CDA$, $DAB$ are the vertices of a rectangle.
2014 Iran Team Selection Test, 2
Point $D$ is an arbitary point on side $BC$ of triangle $ABC$. $I$,$I_1$ and$I_2$ are the incenters of triangles $ABC$,$ABD$ and $ACD$ respectively. $M\not=A$ and $N\not=A$ are the intersections of circumcircle of triangle $ABC$ and circumcircles of triangles $IAI_1$ and $IAI_2$ respectively. Prove that regardless of point $D$, line $MN$ goes through a fixed point.
2012 All-Russian Olympiad, 2
The points $A_1,B_1,C_1$ lie on the sides $BC,CA$ and $AB$ of the triangle $ABC$ respectively. Suppose that $AB_1-AC_1=CA_1-CB_1=BC_1-BA_1$. Let $O_A,O_B$ and $O_C$ be the circumcentres of triangles $AB_1C_1,A_1BC_1$ and $A_1B_1C$ respectively. Prove that the incentre of triangle $O_AO_BO_C$ is the incentre of triangle $ABC$ too.
1981 IMO, 2
Three circles of equal radius have a common point $O$ and lie inside a given triangle. Each circle touches a pair of sides of the triangle. Prove that the incenter and the circumcenter of the triangle are collinear with the point $O$.
2014 Contests, 2
Let $D$ and $E$ be points in the interiors of sides $AB$ and $AC$, respectively, of a triangle $ABC$, such that $DB = BC = CE$. Let the lines $CD$ and $BE$ meet at $F$. Prove that the incentre $I$ of triangle $ABC$, the orthocentre $H$ of triangle $DEF$ and the midpoint $M$ of the arc $BAC$ of the circumcircle of triangle $ABC$ are collinear.
2008 Saint Petersburg Mathematical Olympiad, 1
The graph $y=x^2+ax+b$ intersects any of the two axes at points $A$, $B$, and $C$. The incenter of triangle $ABC$ lies on the line $y=x$. Prove that $a+b+1=0$.
2019 Saudi Arabia BMO TST, 2
Let $I $be the incenter of triangle $ABC$and $J$ the excenter of the side $BC$: Let $M$ be the midpoint of $CB$ and $N$ the midpoint of arc $BAC$ of circle $(ABC)$. If $T$ is the symmetric of the point $N$ by the point $A$, prove that the quadrilateral $JMIT$ is cyclic
2017 All-Russian Olympiad, 8
Given a convex quadrilateral $ABCD$. We denote $I_A,I_B, I_C$ and $I_D$ centers of $\omega_A, \omega_B,\omega_C $and $\omega_D$,inscribed In the triangles $DAB, ABC, BCD$ and $CDA$, respectively.It turned out that $\angle BI_AA + \angle I_CI_AI_D = 180^\circ$. Prove that $\angle BI_BA + \angle I_CI_BI_D = 180^{\circ}$. (A. Kuznetsov)
2004 Singapore Team Selection Test, 2
Let $ABC$ be an isosceles triangle with $AC=BC$, whose incentre is $I$. Let $P$ be a point on the circumcircle of the triangle $AIB$ lying inside the triangle $ABC$. The lines through $P$ parallel to $CA$ and $CB$ meet $AB$ at $D$ and $E$, respectively. The line through $P$ parallel to $AB$ meets $CA$ and $CB$ at $F$ and $G$, respectively. Prove that the lines $DF$ and $EG$ intersect on the circumcircle of the triangle $ABC$.
[i]Proposed by Hojoo Lee, Korea[/i]
2007 Korea Junior Math Olympiad, 7
Let the incircle of $\triangle ABC$ meet $BC,CA,AB$ at $J,K,L$. Let $D(\ne B, J),E(\ne C,K), F(\ne A,L)$ be points on
$BJ,CK,AL$. If the incenter of $\triangle ABC$ is the circumcenter of $\triangle DEF$ and $\angle BAC = \angle DEF$, prove that $\triangle ABC$ and $\triangle DEF$ are isosceles triangles.
Kyiv City MO Juniors Round2 2010+ geometry, 2019.9.3
The equilateral triangle $ABC$ is inscribed in the circle $w$. Points $F$ and $E$ on the sides $AB$ and $AC$, respectively, are chosen such that $\angle ABE+ \angle ACF = 60^o$. The circumscribed circle of $\vartriangle AFE$ intersects the circle $w$ at the point $D$ for the second time. The rays $DE$ and $DF$ intersect the line $BC$ at the points $X$ and $Y$, respectively. Prove that the center of the inscribed circle of $\vartriangle DXY$ does not depend on the choice of points $F$ and $E$.
(Hilko Danilo)
2007 QEDMO 4th, 12
Let $ABC$ be a triangle, and let $D$, $E$, $F$ be the points of contact of its incircle $\omega$ with its sides $BC$, $CA$, $AB$, respectively. Let $K$ be the point of intersection of the line $AD$ with the incircle $\omega$ different from $D$, and let $M$ be the point of intersection of the line $EF$ with the line perpendicular to $AD$ passing through $K$. Prove that $AM$ is parallel to $BC$.
2017 Macedonia National Olympiad, Problem 4
Let $O$ be the circumcenter of the acute triangle $ABC$ ($AB < AC$). Let $A_1$ and $P$ be the feet of the perpendicular lines drawn from $A$ and $O$ to $BC$, respectively. The lines $BO$ and $CO$ intersect $AA_1$ in $D$ and $E$, respectively. Let $F$ be the second intersection point of $\odot ABD$ and $\odot ACE$. Prove that the angle bisector od $\angle FAP$ passes through the incenter of $\triangle ABC$.
1990 IMO Shortlist, 5
Given a triangle $ ABC$. Let $ G$, $ I$, $ H$ be the centroid, the incenter and the orthocenter of triangle $ ABC$, respectively. Prove that $ \angle GIH > 90^{\circ}$.
2002 Iran Team Selection Test, 13
Let $ABC$ be a triangle. The incircle of triangle $ABC$ touches the side $BC$ at $A^{\prime}$, and the line $AA^{\prime}$ meets the incircle again at a point $P$. Let the lines $CP$ and $BP$ meet the incircle of triangle $ABC$ again at $N$ and $M$, respectively. Prove that the lines $AA^{\prime}$, $BN$ and $CM$ are concurrent.
2019 Iran MO (3rd Round), 1
Consider a triangle $ABC$ with incenter $I$. Let $D$ be the intersection of $BI,AC$ and $CI$ intersects the circumcircle of $ABC$ at $M$. Point $K$ lies on the line $MD$ and $\angle KIA=90^\circ$. Let $F$ be the reflection of $B$ about $C$. Prove that $BIKF$ is cyclic.
1998 Estonia National Olympiad, 2
Let $S$ be the incenter of the triangle $ABC$ and let the line $AS$ intersect the circumcircle of triangle $ABC$ at point $D$ ($D\ne A$). Prove that the segments $BD, CD$ and $SD$ are of equal length.
1993 China Team Selection Test, 3
Let $ABC$ be a triangle and its bisector at $A$ cuts its circumcircle at $D.$ Let $I$ be the incenter of triangle $ABC,$ $M$ be the midpoint of $BC,$ $P$ is the symmetric to $I$ with respect to $M$ (Assuming $P$ is in the circumcircle). Extend $DP$ until it cuts the circumcircle again at $N.$ Prove that among segments $AN, BN, CN$, there is a segment that is the sum of the other two.
2015 Danube Mathematical Competition, 1
Let $ABCD$ be a cyclic quadrangle, let the diagonals $AC$ and $BD$ cross at $O$, and let $I$ and $J$ be the incentres of the triangles $ABC$ and $ABD$, respectively. The line $IJ$ crosses the segments $OA$ and $OB$ at $M$ and $N$, respectively. Prove that the triangle $OMN$ is isosceles.
1966 AMC 12/AHSME, 31
Triangle $ABC$ is inscribed in a circle with center $O'$. A circle with center $O$ is inscribed in triangle $ABC$. $AO$ is drawn, and extended to intersect the larger circle in $D$. Then, we must have:
$\text{(A)}\ CD=BD=O'D \qquad
\text{(B)}\ AO=CO=OD \qquad
\text{(C)}\ CD=CO=BD \qquad\\
\text{(D)}\ CD=OD=BD \qquad
\text{(E)}\ O'B=O'C=OD $
[asy]
size(200);
defaultpen(linewidth(0.8)+fontsize(12pt));
pair A=origin,B=(15,0),C=(5,9),O=incenter(A,B,C),Op=circumcenter(A,B,C);
path incirc = incircle(A,B,C),circumcirc = circumcircle(A,B,C),line=A--3*O;
pair D[]=intersectionpoints(circumcirc,line);
draw(A--B--C--A--D[0]^^incirc^^circumcirc);
dot(O^^Op,linewidth(4));
label("$A$",A,dir(185));
label("$B$",B,dir(355));
label("$C$",C,dir(95));
label("$D$",D[0],dir(O--D[0]));
label("$O$",O,NW);
label("$O'$",Op,E);[/asy]
2022 Switzerland - Final Round, 8
Let $ABC$ be a triangle and let $P$ be a point in the interior of the side $BC$. Let $I_1$ and $I_2$ be the incenters of the triangles $AP B$ and $AP C$, respectively. Let $X$ be the closest point to $A$ on the line $AP$ such that $XI_1$ is perpendicular to $XI_2$. Prove that the distance $AX$ is independent of the choice of $P$.
2005 Bulgaria Team Selection Test, 5
Let $ABC$, $AC \not= BC$, be an acute triangle with orthocenter $H$ and incenter $I$. The lines $CH$ and $CI$ meet the circumcircle of $\bigtriangleup ABC$ at points $D$ and $L$, respectively. Prove that $\angle CIH = 90^{\circ}$ if and only if $\angle IDL = 90^{\circ}$