Found problems: 320
2011 Balkan MO Shortlist, G4
Given a triangle $ABC$, the line parallel to the side $BC$ and tangent to the incircle of the triangle meets the sides $AB$ and $AC$ at the points $A_1$ and $A_2$ , the points $B_1, B_2$ and $C_1, C_2$ are dened similarly. Show that
$$AA_1 \cdot AA_2 + BB_1 \cdot BB_2 + CC_1 \cdot CC_2 \ge \frac19 (AB^2 + BC^2 + CA^2)$$
Mathley 2014-15, 3
Let the incircle $\gamma$ of triangle $ABC$ be tangent to $BA, BC$ at $D, E$, respectively. A tangent $t$ to $\gamma$ , distinct from the sidelines, intersects the line $AB$ at $M$. If lines $CM, DE$ meet at$ K$, prove that lines $AK,BC$ and $t$ are parallel or concurrent.
Michel Bataille , France
2006 Abels Math Contest (Norwegian MO), 4
Let $\gamma$ be the circumscribed circle about a right-angled triangle $ABC$ with right angle $C$. Let $\delta$ be the circle tangent to the sides $AC$ and $BC$ and tangent to the circle $\gamma$ internally.
(a) Find the radius $i$ of $\delta$ in terms of $a$ when $AC$ and $BC$ both have length $a$.
(b) Show that the radius $i$ is twice the radius of the inscribed circle of $ABC$.
1992 IMO Longlists, 29
Show that in the plane there exists a convex polygon of 1992 sides satisfying the following conditions:
[i](i)[/i] its side lengths are $ 1, 2, 3, \ldots, 1992$ in some order;
[i](ii)[/i] the polygon is circumscribable about a circle.
[i]Alternative formulation:[/i] Does there exist a 1992-gon with side lengths $ 1, 2, 3, \ldots, 1992$ circumscribed about a circle? Answer the same question for a 1990-gon.
Kyiv City MO Seniors 2003+ geometry, 2006.10.4
A circle $\omega$ is inscribed in the acute-angled triangle $\vartriangle ABC$, which touches the side $BC$ at the point $K$. On the lines $AB$ and $AC$, the points $P$ and $Q$, respectively, are chosen so that $PK \perp AC$ and $QK \perp AB$. Denote by $M$ and $N$ the points of intersection of $KP$ and $KQ$ with the circle $\omega$. Prove that if $MN \parallel PQ$, then $\vartriangle ABC$ is isosceles.
(S. Slobodyanyuk)
Durer Math Competition CD 1st Round - geometry, 2018.D+4
The center of the inscribed circle of triangle $ABC$ is $I$. Let $e$ be the perpendicular line on $CI$ passing through $I$. The line $e$ itnersects the side $AC$ at $A'$ and the side $BC$ at point $B'$. Let $A''$ be the symmetric point of $A$ wrt $A'$, $B''$ be the symmetric point of $B$ wrt $B'$. Prove that $A''B''$ is a line tangent to the incircle.
2013 Oral Moscow Geometry Olympiad, 6
The trapezoid $ABCD$ is inscribed in the circle $w$ ($AD // BC$). The circles inscribed in the triangles $ABC$ and $ABD$ touch the base of the trapezoid $BC$ and $AD$ at points $P$ and $Q$ respectively. Points $X$ and $Y$ are the midpoints of the arcs $BC$ and $AD$ of circle $w$ that do not contain points $A$ and $B$ respectively. Prove that lines $XP$ and $YQ$ intersect on the circle $w$.
2015 Thailand Mathematical Olympiad, 4
Let $\vartriangle ABC$ be a triangle with an obtuse angle $\angle ACB$. The incircle of $\vartriangle ABC$ centered at $I$ is tangent to the sides $AB, BC, CA$ at $D, E, F$ respectively. Lines $AI$ and $BI$ intersect $EF$ at $M$ and $N$ respectively. Let $G$ be the midpoint of $AB$. Show that $M, N, G, D$ lie on a circle.
Champions Tournament Seniors - geometry, 2015.3
Given a triangle $ABC$. Let $\Omega$ be the circumscribed circle of this triangle, and $\omega$ be the inscribed circle of this triangle. Let $\delta$ be a circle that touches the sides $AB$ and $AC$, and also touches the circle $\Omega$ internally at point $D$. The line $AD$ intersects the circle $\Omega$ at two points $P$ and $Q$ ($P$ lies between $A$ and $Q$). Let $O$ and $I$ be the centers of the circles $\Omega$ and $\omega$. Prove that $OD \parallel IQ$.
2013 IMAC Arhimede, 5
Let $\Gamma$ be the circumcircle of a triangle $ABC$ and let $E$ and $F$ be the intersections of the bisectors of $\angle ABC$ and $\angle ACB$ with $\Gamma$. If $EF$ is tangent to the incircle $\gamma$ of $\triangle ABC$, then find the value of $\angle BAC$.
2017 Saudi Arabia IMO TST, 2
Let $ABCD$ be the circumscribed quadrilateral with the incircle $(I)$. The circle $(I)$ touches $AB, BC, C D, DA$ at $M, N, P,Q$ respectively. Let $K$ and $L$ be the circumcenters of the triangles $AMN$ and $APQ$ respectively. The line $KL$ cuts the line $BD$ at $R$. The line $AI$ cuts the line $MQ$ at $J$. Prove that $RA = RJ$.
2005 Alexandru Myller, 2
Let be a point $ P $ inside a triangle $ ABC. $ Prove that the following relations are equivalent:
$ \text{(i)} $ Any collinear triple of points $ (E,P,F) $ with $ E,F $ on $ AB,AC, $ respectively, verifies the equality
$$ \frac{1}{AE} +\frac{1}{AF} =\frac{AB+BC+CA}{AB\cdot AC} $$
$ \text{(ii)} P $ is the incircle of $ ABC $
2000 IMO Shortlist, 8
Let $ AH_1, BH_2, CH_3$ be the altitudes of an acute angled triangle $ ABC$. Its incircle touches the sides $ BC, AC$ and $ AB$ at $ T_1, T_2$ and $ T_3$ respectively. Consider the symmetric images of the lines $ H_1H_2, H_2H_3$ and $ H_3H_1$ with respect to the lines $ T_1T_2, T_2T_3$ and $ T_3T_1$. Prove that these images form a triangle whose vertices lie on the incircle of $ ABC$.
2013 Dutch BxMO/EGMO TST, 5
Let $ABCD$ be a cyclic quadrilateral for which $|AD| =|BD|$. Let $M$ be the intersection of $AC$ and $BD$. Let $I$ be the incentre of $\triangle BCM$. Let $N$ be the second intersection pointof $AC$ and the circumscribed circle of $\triangle BMI$. Prove that $|AN| \cdot |NC| = |CD | \cdot |BN|$.
2016 Sharygin Geometry Olympiad, P20
The incircle $\omega$ of a triangle $ABC$ touches $BC, AC$ and $AB$ at points $A_0, B_0$ and $C_0$ respectively. The bisectors of angles $B$ and $C$ meet the perpendicular bisector to segment $AA_0$ at points $Q$ and $P$ respectively. Prove that $PC_0$ and $QB_0$ meet on $\omega$ .
2014 Iranian Geometry Olympiad (junior), P2
The inscribed circle of $\triangle ABC$ touches $BC, AC$ and $AB$ at $D,E$ and $F$ respectively. Denote the perpendicular foots from $F, E$ to $BC$ by $K, L$ respectively. Let the second intersection of these perpendiculars with the incircle be $M, N$ respectively. Show that $\frac{{{S}_{\triangle BMD}}}{{{S}_{\triangle CND}}}=\frac{DK}{DL}$
by Mahdi Etesami Fard
2023 South East Mathematical Olympiad, 5
As shown in the figure, in $\vartriangle ABC$, $AB>AC$, the inscribed circle $I$ is tangent to the sides $BC$, $CA$, $AB$ at points $D$, $E$, $F$ respectively, and the straight lines $BC$ and $EF$ intersect at point $K$, $DG \perp EF$ at point $G$, ray $IG$ intersects the circumscribed circle of $\vartriangle ABC$ at point $H$. Prove that points $H$, $G$, $D$, $K$ lie on a circle.
[img]https://cdn.artofproblemsolving.com/attachments/5/e/804fb919e9c2f9cf612099e44bad9c75699b2e.png[/img]
2023 Belarus - Iran Friendly Competition, 4
Let $\Gamma$ be the incircle of a non-isosceles triangle $ABC$, $I$ be it’s incenter. Let $A_1,
B_1, C_1$ be the tangency points of $\Gamma$ with the sides $BC, AC, AB$ respectively. Let $A_2 = \Gamma \cap AA_1$,
$M = C_1B_1 \cap AI$, $P$ and $Q$ be the other (different from $A_1$ and $A_2$) intersection points of $\Gamma$ and $A_1M$,
$A_2M$ respectively. Prove that $A$, $P$ and $Q$ are colinear.
Russian TST 2014, P2
In an acute-angled triangle $ABC$, the point $H{}$ is the orthocenter, $M{}$ is the midpoint of the side $BC$ and $\omega$ is the circumcircle. The lines $AH, BH$ and $CH{}$ intersect $\omega$ a second time at points $D, E$ and $F{}$ respectively. The ray $MH$ intersects $\omega$ at point $J{}$. The points $K{}$ and $L{}$ are the centers of the inscribed circles of the triangles $DEJ$ and $DFJ$ respectively. Prove that $KL\parallel BC$.
1989 Tournament Of Towns, (214) 2
It is known that a circle can be inscribed in a trapezium $ABCD$.
Prove that the two circles, constructed on its oblique sides as diameters, touch each other.
(D. Fomin, Leningrad)
2017 All-Russian Olympiad, 8
Given a convex quadrilateral $ABCD$. We denote $I_A,I_B, I_C$ and $I_D$ centers of $\omega_A, \omega_B,\omega_C $and $\omega_D$,inscribed In the triangles $DAB, ABC, BCD$ and $CDA$, respectively.It turned out that $\angle BI_AA + \angle I_CI_AI_D = 180^\circ$. Prove that $\angle BI_BA + \angle I_CI_BI_D = 180^{\circ}$. (A. Kuznetsov)
Ukraine Correspondence MO - geometry, 2016.7
The circle $\omega$ inscribed in an isosceles triangle $ABC$ ($AC = BC$) touches the side $BC$ at point $D$ .On the extensions of the segment $AB$ beyond points $A$ and $B$, respectively mark the points $K$ and $L$ so that $AK = BL$, The lines $KD$ and $LD$ intersect the circle $\omega$ for second time at points $G$ and $H$, respectively. Prove that point $A$ belongs to the line $GH$.
2000 Czech And Slovak Olympiad IIIA, 2
Let be given an isosceles triangle $ABC$ with the base $AB$. A point $P$ is chosen on the altitude $CD$ so that the incircles of $ABP$ and $PECF$ are congruent, where $E$ and $F$ are the intersections of $AP$ and $BP$ with the opposite sides of the triangle, respectively. Prove that the incircles of triangles $ADP$ and $BCP$ are also congruent.
2015 Postal Coaching, Problem 4
Let $ABC$ be at triangle with incircle $\Gamma$. Let $\Gamma_1$, $\Gamma_2$, $\Gamma_3$ be three circles inside $\triangle ABC$ each of which is tangent to $\Gamma$ and two sides of the triangle and their radii are $1,4,9$. Find the radius of $\Gamma$.
2021 Saudi Arabia Training Tests, 18
Let $ABC$ be a triangle with $AB < AC$ and incircle $(I)$ tangent to $BC$ at $D$. Take $K$ on $AD$ such that $CD = CK$. Suppose that $AD$ cuts $(I)$ at $G$ and $BG$ cuts $CK$ at $L$. Prove that K is the midpoint of $CL$.