This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 320

2014 ELMO Shortlist, 7

Let $ABC$ be a triangle inscribed in circle $\omega$ with center $O$, let $\omega_A$ be its $A$-mixtilinear incircle, $\omega_B$ be its $B$-mixtilinear incircle, $\omega_C$ be its $C$-mixtilinear incircle, and $X$ be the radical center of $\omega_A$, $\omega_B$, $\omega_C$. Let $A'$, $B'$, $C'$ be the points at which $\omega_A$, $\omega_B$, $\omega_C$ are tangent to $\omega$. Prove that $AA'$, $BB'$, $CC'$ and $OX$ are concurrent. [i]Proposed by Robin Park[/i]

1994 Poland - Second Round, 5

The incircle $\omega$ of a triangle $ABC$ is tangent to the sides $AB$ and $BC$ at $P$ and $Q$ respectively. The angle bisector at $A$ meets $PQ$ at point $S$. Prove $\angle ASC = 90^o$ .

Kvant 2023, M2769

The incircle of the triangle $ABC$ touches the sides $BC, CA$ and $AB{}$ at $D,E$ and $F{}$ respectively. Let the circle $\omega$ touch the segments $CA{}$ and $AB{}$ at $Q{}$ and $R{}$ respectively, and the points $M{}$ and $N{}$ are selected on the segments $AB{}$ and $AC{}$ respectively, so that the segments $CM{}$ and $BN{}$ touch $\omega$. The bisectors of $\angle NBC$ and $\angle MCB$ intersect the segments $DE{}$ and $DF{}$ at $K{}$ and $L{}$ respectively. Prove that the lines $RK{}$ and $QL{}$ intersect on $\omega$. [i]Proposed by Tran Quang Hung[/i]

1999 Tournament Of Towns, 5

The sides $AB$ and $AC$ are tangent at points $P$ and $Q$, respectively, to the incircle of a triangle $ABC. R$ and $S$ are the midpoints of the sides $AC$ and $BC$, respectively, and $T$ is the intersection point of the lines $PQ$ and $RS$. Prove that $T$ lies on the bisector of the angle $B$ of the triangle. (M Evdokimov)

1970 IMO Shortlist, 8

$M$ is any point on the side $AB$ of the triangle $ABC$. $r,r_1,r_2$ are the radii of the circles inscribed in $ABC,AMC,BMC$. $q$ is the radius of the circle on the opposite side of $AB$ to $C$, touching the three sides of $AB$ and the extensions of $CA$ and $CB$. Similarly, $q_1$ and $q_2$. Prove that $r_1r_2q=rq_1q_2$.

2009 Oral Moscow Geometry Olympiad, 3

Altitudes $AA_1$ and $BB_1$ are drawn in the acute-angled triangle $ABC$. Prove that the perpendicular drawn from the touchpoint of the inscribed circle with the side $BC$, on the line $AC$ passes through the center of the inscribed circle of the triangle $A_1CB_1$. (V. Protasov)

1952 Moscow Mathematical Olympiad, 215

$\vartriangle ABC$ is divided by a straight line $BD$ into two triangles. Prove that the sum of the radii of circles inscribed in triangles $ABD$ and $DBC$ is greater than the radius of the circle inscribed in $\vartriangle ABC$.

2019 Saudi Arabia Pre-TST + Training Tests, 1.3

Let $ABCD$ be a trapezoid with $\angle A = \angle B = 90^o$ and a point $E$ lies on the segment $CD$. Denote $(\omega)$ as incircle of triangle $ABE$ and it is tangent to $AB,AE,BE$ respectively at $P, F,K$. Suppose that $KF$ cuts $BC,AD$ at $M,N$ and $PM,PN$ cut $(\omega)$ at $H, T$. Prove that $PH = PT$.

2014 ELMO Shortlist, 7

Let $ABC$ be a triangle inscribed in circle $\omega$ with center $O$, let $\omega_A$ be its $A$-mixtilinear incircle, $\omega_B$ be its $B$-mixtilinear incircle, $\omega_C$ be its $C$-mixtilinear incircle, and $X$ be the radical center of $\omega_A$, $\omega_B$, $\omega_C$. Let $A'$, $B'$, $C'$ be the points at which $\omega_A$, $\omega_B$, $\omega_C$ are tangent to $\omega$. Prove that $AA'$, $BB'$, $CC'$ and $OX$ are concurrent. [i]Proposed by Robin Park[/i]

2016 Dutch BxMO TST, 3

Let $\vartriangle ABC$ be a right-angled triangle with $\angle A = 90^o$ and circumcircle $\Gamma$. The inscribed circle is tangent to $BC$ in point $D$. Let $E$ be the midpoint of the arc $AB$ of $\Gamma$ not containing $C$ and let $F$ be the midpoint of the arc $AC$ of $\Gamma$ not containing $B$. (a) Prove that $\vartriangle ABC \sim \vartriangle DEF$. (b) Prove that $EF$ goes through the points of tangency of the incircle to $AB$ and $AC$.

1991 Spain Mathematical Olympiad, 4

Tags: incircle , geometry , angle
The incircle of $ABC$ touches the sides $BC,CA,AB$ at $A' ,B' ,C'$ respectively. The line $A' C'$ meets the angle bisector of $\angle A$ at $D$. Find $\angle ADC$.

Geometry Mathley 2011-12, 14.3

Let $ABC$ be a triangle inscribed in circle $(I)$ that is tangent to the sides $BC,CA,AB$ at points $D,E, F$ respectively. Assume that $L$ is the intersection of $BE$ and $CF,G$ is the centroid of triangle $DEF,K$ is the symmetric point of $L$ about $G$. If $DK$ meets $EF$ at $P, Q$ is on $EF$ such that $QF = PE$, prove that $\angle DGE + \angle FGQ = 180^o$. Nguyễn Minh Hà

2024 Bangladesh Mathematical Olympiad, P5

Let $I$ be the incenter of $\triangle ABC$ and $P$ be a point such that $PI$ is perpendicular to $BC$ and $PA$ is parallel to $BC$. Let the line parallel to $BC$, which is tangent to the incircle of $\triangle ABC$, intersect $AB$ and $AC$ at points $Q$ and $R$ respectively. Prove that $\angle BPQ = \angle CPR$.

2019 Bundeswettbewerb Mathematik, 3

Let $ABC$ be atriangle with $\overline{AC}> \overline{BC}$ and incircle $k$. Let $M,W,L$ be the intersections of the median, angle bisector and altitude from point $C$ respectively. The tangent to $k$ passing through $M$, that is different from $AB$, touch $k$ in $T$. Prove that the angles $\angle MTW$ and $\angle TLM$ are equal.

2023 Brazil EGMO Team Selection Test, 3

Let $\Delta ABC$ be a triangle and $L$ be the foot of the bisector of $\angle A$. Let $O_1$ and $O_2$ be the circumcenters of $\triangle ABL$ and $\triangle ACL$ respectively and let $B_1$ and $C_1$ be the projections of $C$ and $B$ through the bisectors of the angles $\angle B$ and $\angle C$ respectively. The incircle of $\Delta ABC$ touches $AC$ and $AB$ at points $B_0$ and $C_0$ respectively and the bisectors of angles $\angle B$ and $\angle C$ meet the perpendicular bisector of $AL$ at points $Q$ and $P$ respectively. Prove that the five lines $PC_0, QB_0, O_1C_1, O_2B_1$ and $BC$ are all concurrent.

2014 Belarus Team Selection Test, 3

Point $L$ is marked on the side $AB$ of a triangle $ABC$. The incircle of the triangle $ABC$ meets the segment $CL$ at points $P$ and $Q$ .Is it possible that the equalities $CP = PQ = QL$ hold if $CL$ is a) the median? b) the bisector? c) the altitude? d) the segment joining vertex $C$ with the point $L$ of tangency of the excircle of the triangie $ABC$ with $AB$ ? (I. Gorodnin)

1982 IMO Shortlist, 13

A non-isosceles triangle $A_{1}A_{2}A_{3}$ has sides $a_{1}$, $a_{2}$, $a_{3}$ with the side $a_{i}$ lying opposite to the vertex $A_{i}$. Let $M_{i}$ be the midpoint of the side $a_{i}$, and let $T_{i}$ be the point where the inscribed circle of triangle $A_{1}A_{2}A_{3}$ touches the side $a_{i}$. Denote by $S_{i}$ the reflection of the point $T_{i}$ in the interior angle bisector of the angle $A_{i}$. Prove that the lines $M_{1}S_{1}$, $M_{2}S_{2}$ and $M_{3}S_{3}$ are concurrent.

2018 Yasinsky Geometry Olympiad, 5

The inscribed circle of the triangle $ABC$ touches its sides $AB, BC, CA$, at points $K,N, M$ respectively. It is known that $\angle ANM = \angle CKM$. Prove that the triangle $ABC$ is isosceles. (Vyacheslav Yasinsky)

Cono Sur Shortlist - geometry, 1993.8

In a triangle $ABC$, let $D$, $E$ and $F$ be the touchpoints of the inscribed circle and the sides $AB$, $BC$ and $CA$. Show that the triangles $DEF$ and $ABC$ are similar if and only if $ABC$ is equilateral.

Mathematical Minds 2024, P8

Let $ABC$ be a triangle with circumcircle $\Omega$, incircle $\omega$, and $A$-excircle $\omega_A$. Let $X$ and $Y$ be the tangency points of $\omega_A$ with $AB$ and $AC$. Lines $XY$ and $BC$ intersect in $T$. The tangent from $T$ to $\omega$ different from $BC$ intersects $\omega$ at $K$. The radical axis of $\omega_A$ and $\Omega$ intersects $BC$ in $S$. The tangent from $S$ to $\omega_A$ different from $BC$ intersects $\omega_A$ at $L$. Prove that $A$, $K$ and $L$ are collinear. [i]Proposed by Ana Boiangiu[/i]

2013 Dutch BxMO/EGMO TST, 5

Let $ABCD$ be a cyclic quadrilateral for which $|AD| =|BD|$. Let $M$ be the intersection of $AC$ and $BD$. Let $I$ be the incentre of $\triangle BCM$. Let $N$ be the second intersection pointof $AC$ and the circumscribed circle of $\triangle BMI$. Prove that $|AN| \cdot |NC| = |CD | \cdot |BN|$.

2016 Harvard-MIT Mathematics Tournament, 10

Let $ABC$ be a triangle with incenter $I$ whose incircle is tangent to $\overline{BC}$, $\overline{CA}$, $\overline{AB}$ at $D$, $E$, $F$. Point $P$ lies on $\overline{EF}$ such that $\overline{DP} \perp \overline{EF}$. Ray $BP$ meets $\overline{AC}$ at $Y$ and ray $CP$ meets $\overline{AB}$ at $Z$. Point $Q$ is selected on the circumcircle of $\triangle AYZ$ so that $\overline{AQ} \perp \overline{BC}$. Prove that $P$, $I$, $Q$ are collinear.

1970 IMO, 1

$M$ is any point on the side $AB$ of the triangle $ABC$. $r,r_1,r_2$ are the radii of the circles inscribed in $ABC,AMC,BMC$. $q$ is the radius of the circle on the opposite side of $AB$ to $C$, touching the three sides of $AB$ and the extensions of $CA$ and $CB$. Similarly, $q_1$ and $q_2$. Prove that $r_1r_2q=rq_1q_2$.

2014 Belarus Team Selection Test, 1

Given triangle $ABC$ with $\angle A = a$. Let $AL$ be the bisector of the triangle $ABC$. Let the incircle of $\vartriangle ABC$ touch the sides $AB$ and $BC$ at points $P$ and $Q$ respectively. Let $X$ be the intersection point of the lines $AQ$ and $LP$. Prove that the lines $BX$ and $AL$ are perpendicular. (V. Karamzin)

Kyiv City MO Juniors 2003+ geometry, 2007.9.3

On a straight line $4$ points are successively set , $A, P, Q,W $, which are the points of intersection of the bisector $AL $ of the triangle $ABC$ with the circumscribed and inscribed circle. Knowing only these points, construct a triangle $ABC $.