This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 351

Estonia Open Senior - geometry, 2010.1.4

Circle $c$ passes through vertices $A$ and $B$ of an isosceles triangle $ABC$, whereby line $AC$ is tangent to it. Prove that circle $c$ passes through the circumcenter or the incenter or the orthocenter of triangle $ABC$.

Ukraine Correspondence MO - geometry, 2014.7

Let $ABC$ be an isosceles triangle ($AB = AC$). The points $D$ and $E$ were marked on the ray $AC$ so that $AC = 2AD$ and $AE = 2AC$. Prove that $BC$ is the bisector of the angle $\angle DBE$.

Ukraine Correspondence MO - geometry, 2006.10

Let $ABC$ be an isosceles triangle ($AB=AC$). An arbitrary point $M$ is chosen on the extension of the $BC$ beyond point $B$. Prove that the sum of the radius of the circle inscribed in the triangle $AM​​B$ and the radius of the circle tangent to the side $AC$ and the extensions of the sides $AM, CM$ of the triangle $AMC$ does not depend on the choice of point $M$.

Ukrainian From Tasks to Tasks - geometry, 2012.2

The triangle $ABC$ is equilateral. Find the locus of the points $M$ such that the triangles $ABM$ and $ACM$ are both isosceles.

2015 Portugal MO, 2

Let $[ABC]$ be a triangle and $D$ a point between $A$ and $B$. If the triangles $[ABC], [ACD]$ and $[BCD]$ are all isosceles, what are the possible values of $\angle ABC$?

1995 Romania Team Selection Test, 4

Let $ABCD$ be a convex quadrilateral. Suppose that similar isosceles triangles $APB, BQC, CRD, DSA$ with the bases on the sides of $ABCD$ are constructed in the exterior of the quadrilateral such that $PQRS$ is a rectangle but not a square. Show that $ABCD$ is a rhombus.

2011 Austria Beginners' Competition, 4

Let $ABC$ be an isosceles triangle with $AC = BC$. On the arc $CA$ of its circumcircle, which does not contain $ B$, there is a point $ P$. The projection of $C$ on the line $AP$ is denoted by $E$, the projection of $C$ on the line $BP$ is denoted by $F$. Prove that the lines $AE$ and $BF$ have equal lengths. (W. Janous, WRG Ursulincn, Innsbruck)

2021 Bolivia Ibero TST, 4

On a isosceles triangle $\triangle ABC$ with $AB=BC$ let $K,M$ be the midpoints of $AB,AC$ respectivily. Let $(CKB)$ intersect $BM$ at $N \ne M$, the line through $N$ parallel to $AC$ intersects $(ABC)$ at $A_1,C_1$. Show that $\triangle A_1BC_1$ is equilateral.

1996 All-Russian Olympiad Regional Round, 9.2

In triangle $ABC$, in which $AB = BC$, on side $AB$ is selected point $D$, and the ciscumcircles of triangles $ADC$ and $BDC$ , $S1$ and $S2$ respectively. The tangent drawn to $S_1$ at point $D$ intersects $S_2$ for second time at point $M$. Prove that $BM \parallel AC$.

2021 Oral Moscow Geometry Olympiad, 5

The trapezoid is inscribed in a circle. Prove that the sum of distances from any point of the circle to the midpoints of the lateral sides are not less than the diagonal of the trapezoid.

Brazil L2 Finals (OBM) - geometry, 2004.2

In the figure, $ABC$ and $DAE$ are isosceles triangles ($AB = AC = AD = DE$) and the angles $BAC$ and $ADE$ have measures $36^o$. a) Using geometric properties, calculate the measure of angle $\angle EDC$. b) Knowing that $BC = 2$, calculate the length of segment $DC$. c) Calculate the length of segment $AC$ . [img]https://1.bp.blogspot.com/-mv43_pSjBxE/XqBMTfNlRKI/AAAAAAAAL2c/5ILlM0n7A2IQleu9T4yNmIY_1DtrxzsJgCK4BGAYYCw/s400/2004%2Bobm%2Bl2.png[/img]

2022 Novosibirsk Oral Olympiad in Geometry, 6

Anton has an isosceles right triangle, which he wants to cut into $9$ triangular parts in the way shown in the picture. What is the largest number of the resulting $9$ parts that can be equilateral triangles? A more formal description of partitioning. Let triangle $ABC$ be given. We choose two points on its sides so that they go in the order $AC_1C_2BA_1A_2CB_1B_2$, and no two coincide. In addition, the segments $C_1A_2$, $A_1B_2$ and $B_1C_2$ must intersect at one point. Then the partition is given by segments $C_1A_2$, $A_1B_2$, $B_1C_2$, $A_1C_2$, $B_1A_2$ and $C_1B_2$. [img]https://cdn.artofproblemsolving.com/attachments/0/5/5dd914b987983216342e23460954d46755d351.png[/img]

Ukrainian TYM Qualifying - geometry, 2019.8

Hannusya, Petrus and Mykolka drew independently one isosceles triangle $ABC$, all angles of which are measured as a integer number of degrees. It turned out that the bases $AC$ of these triangles are equals and for each of them on the ray $BC$ there is a point $E$ such that $BE=AC$, and the angle $AEC$ is also measured by an integer number of degrees. Is it in necessary that: a) all three drawn triangles are equal to each other? b) among them there are at least two equal triangles?

Champions Tournament Seniors - geometry, 2011.2

Let $ABC$ be an isosceles triangle in which $AB = AC$. On its sides $BC$ and $AC$ respectively are marked points $P$ and $Q$ so that $PQ\parallel AB$. Let $F$ be the center of the circle circumscribed about the triangle $PQC$, and $E$ the midpoint of the segment $BQ$. Prove that $\angle AEF = 90^o $.

2017 NZMOC Camp Selection Problems, 2

Let $ABCD$ be a parallelogram with an acute angle at $A$. Let $G$ be the point on the line $AB$, distinct from $B$, such that $CG = CB$. Let $H$ be the point on the line $BC$, distinct from $B$, such that $AB = AH$. Prove that triangle $DGH$ is isosceles.

2006 Sharygin Geometry Olympiad, 12

In the triangle $ABC$, the bisector of angle $A$ is equal to the half-sum of the height and median drawn from vertex $A$. Prove that if $\angle A$ is obtuse, then $AB = AC$.

2015 Lusophon Mathematical Olympiad, 5

Two circles of radius $R$ and $r$, with $R>r$, are tangent to each other externally. The sides adjacent to the base of an isosceles triangle are common tangents to these circles. The base of the triangle is tangent to the circle of the greater radius. Determine the length of the base of the triangle.

2018 Yasinsky Geometry Olympiad, 5

The inscribed circle of the triangle $ABC$ touches its sides $AB, BC, CA$, at points $K,N, M$ respectively. It is known that $\angle ANM = \angle CKM$. Prove that the triangle $ABC$ is isosceles. (Vyacheslav Yasinsky)

2024 Bulgaria MO Regional Round, 12.1

Let $ABC$ be an acute triangle with midpoint $M$ of $AB$. The point $D$ lies on the segment $MB$ and $I_1, I_2$ denote the incenters of $\triangle ADC$ and $\triangle BDC$. Given that $\angle I_1MI_2=90^{\circ}$, show that $CA=CB$.

2013 NZMOC Camp Selection Problems, 9

Let $ABC$ be a triangle with $\angle CAB > 45^o$ and $\angle CBA > 45^o$. Construct an isosceles right angled triangle $RAB$ with $AB$ as its hypotenuse and $R$ inside $ABC$. Also construct isosceles right angled triangles $ACQ$ and $BCP$ having $AC$ and $BC$ respectively as their hypotenuses and lying entirely outside $ABC$. Show that $CQRP$ is a parallelogram.

2007 Oral Moscow Geometry Olympiad, 2

An isosceles right-angled triangle $ABC$ is given. On the extensions of sides $AB$ and $AC$, behind vertices $B$ and $C$ equal segments $BK$ and $CL$ were laid. $E$ and F are the points of intersection of the segment $KL$ and the lines perpendicular to the $KC$ , passing through the points $B$ and $A$, respectively. Prove that $EF = FL$.

2020 Ukrainian Geometry Olympiad - April, 1

In triangle $ABC$, bisectors are drawn $AA_1$ and $CC_1$. Prove that if the length of the perpendiculars drawn from the vertex $B$ on lines $AA1$ and $CC_1$ are equal, then $\vartriangle ABC$ is isosceles.

2003 Greece Junior Math Olympiad, 3

Let $ABC$ be an isosceles triangle ($AB=AC$). The altitude $AH$ and the perpendiculare bisector $(e)$ of side $AB$ intersect at point $M$ . The perpendicular on line $(e)$ passing through $M$ intersects $BC$ at point $D$. If the circumscribed circle of the triangle $BMD$ intersects line $(e)$ at point $S$ , the prove that: a) $BS // AM$ . b) quadrilateral $AMBS$ is rhombus.

2010 Junior Balkan Team Selection Tests - Moldova, 7

In the triangle $ABC$ with $| AB | = c, | BC | = a, | CA | = b$ the relations hold simultaneously $$a \ge max \{ b, c, \sqrt{bc}\}, \sqrt{(a - b) (a + c)} + \sqrt{(a - c) (a + b) } \ge 2\sqrt{a^2-bc}$$ Prove that the triangle $ABC$ is isosceles.

Denmark (Mohr) - geometry, 2005.3

The point $P$ lies inside $\vartriangle ABC$ so that $\vartriangle BPC$ is isosceles, and angle $P$ is a right angle. Furthermore both $\vartriangle BAN$ and $\vartriangle CAM$ are isosceles with a right angle at $A$, and both are outside $\vartriangle ABC$. Show that $\vartriangle MNP$ is isosceles and right-angled. [img]https://1.bp.blogspot.com/-i9twOChu774/XzcBLP-RIXI/AAAAAAAAMXA/n5TJCOJypeMVW28-9GDG4st5C47yhvTCgCLcBGAsYHQ/s0/2005%2BMohr%2Bp3.png[/img]