This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 288

1966 IMO Shortlist, 16

We are given a circle $K$ with center $S$ and radius $1$ and a square $Q$ with center $M$ and side $2$. Let $XY$ be the hypotenuse of an isosceles right triangle $XY Z$. Describe the locus of points $Z$ as $X$ varies along $K$ and $Y$ varies along the boundary of $Q.$

2020 Tournament Of Towns, 5

Tags: geometry , circles , locus
Given are two circles which intersect at points $P$ and $Q$. Consider an arbitrary line $\ell$ through $Q$, let the second points of intersection of this line with the circles be $A$ and $B$ respectively. Let $C$ be the point of intersection of the tangents to the circles in those points. Let $D$ be the intersection of the line $AB$ and the bisector of the angle $CPQ$. Prove that all possible $D$ for any choice of $\ell$ lie on a single circle. Alexey Zaslavsky

Kyiv City MO 1984-93 - geometry, 1991.7.4

Given a circle, point $C$ on it and point $A$ outside the circle. The equilateral triangle $ACP$ is constructed on the segment $AC$. Point $C$ moves along the circle. What trajectory will the point $P$ describe?

1998 Belarus Team Selection Test, 1

Tags: geometry , locus , circles , angle
Two circles $S_1$ and $S_2$ intersect at different points $P,Q$. The arc of $S_1$ lying inside $S_2$ measures $2a$ and the arc of $S_2$ lying inside $S_1$ measures $2b$. Let $T$ be any point on $S_1$. Let $R,S$ be another points of intersection of $S_2$ with $TP$ and $TQ$ respectively. Let $a+2b<\pi$ . Find the locus of the intersection points of $PS$ and $RQ$. S.Shikh

Ukrainian From Tasks to Tasks - geometry, 2012.2

The triangle $ABC$ is equilateral. Find the locus of the points $M$ such that the triangles $ABM$ and $ACM$ are both isosceles.

1964 Vietnam National Olympiad, 3

Let $P$ be a plane and two points $A \in (P),O \notin (P)$. For each line in $(P)$ through $A$, let $H$ be the foot of the perpendicular from $O$ to the line. Find the locus $(c)$ of $H$. Denote by $(C)$ the oblique cone with peak $O$ and base $(c)$. Prove that all planes, either parallel to $(P)$ or perpendicular to $OA$, intersect $(C)$ by circles. Consider the two symmetric faces of $(C)$ that intersect $(C)$ by the angles $\alpha$ and $\beta$ respectively. Find a relation between $\alpha$ and $\beta$.

2018 Bundeswettbewerb Mathematik, 3

Let $T$ be a point on a line segment $AB$ such that $T$ is closer to $B$ than to $A$. Show that for each point $C \ne T$ on the line through $T$ perpendicular to $AB$ there is exactly one point $D$ on the line segment $AC$ with $\angle CBD=\angle BAC$. Moreover, show that the line through $D$ perpendicular to $AC$ intersects the line $AB$ in a point $E$ which is independent of the position of $C$.

1986 All Soviet Union Mathematical Olympiad, 424

Two circumferences, with the distance $d$ between centres, intersect in points $P$ and $Q$ . Two lines are drawn through the point $A$ on the first circumference ($Q\ne A\ne P$) and points $P$ and $Q$ . They intersect the second circumference in the points $B$ and $C$ . a) Prove that the radius of the circle, circumscribed around the triangle$ABC$ , equals $d$. b) Describe the set of the new circle's centres, if thepoint $A$ moves along all the first circumference.

2017 Ukrainian Geometry Olympiad, 3

Circles ${w}_{1},{w}_{2}$ intersect at points ${{A}_{1}} $ and ${{A}_{2}} $. Let $B$ be an arbitrary point on the circle ${{w}_{1}}$, and line $B{{A}_{2}}$ intersects circle ${{w}_{2}}$ at point $C$. Let $H$ be the orthocenter of $\Delta B{{A}_{1}}C$. Prove that for arbitrary choice of point $B$, the point $H$ lies on a certain fixed circle.

1997 Croatia National Olympiad, Problem 2

Tags: locus , circles , geometry
Consider a circle $k$ and a point $K$ in the plane. For any two distinct points $P$ and $Q$ on $k$, denote by $k'$ the circle through $P,Q$ and $K$. The tangent to $k'$ at $K$ meets the line $PQ$ at point $M$. Describe the locus of the points $M$ when $P$ and $Q$ assume all possible positions.

1949 Moscow Mathematical Olympiad, 165

Consider two triangles, $ABC$ and $DEF$, and any point $O$. We take any point $X$ in $\vartriangle ABC$ and any point $Y$ in $\vartriangle DEF$ and draw a parallelogram $OXY Z$. Prove that the locus of all possible points $Z$ form a polygon. How many sides can it have? Prove that its perimeter is equal to the sum of perimeters of the original triangles.

2013 Sharygin Geometry Olympiad, 7

Two fixed circles $\omega_1$ and $\omega_2$ pass through point $O$. A circle of an arbitrary radius $R$ centered at $O$ meets $\omega_1$ at points $A$ and $B$, and meets $\omega_2$ at points $C$ and $D$. Let $X$ be the common point of lines $AC$ and $BD$. Prove that all the points X are collinear as $R$ changes.

2021 Sharygin Geometry Olympiad, 8.3

Three cockroaches run along a circle in the same direction. They start simultaneously from a point $S$. Cockroach $A$ runs twice as slow than $B$, and thee times as slow than $C$. Points $X, Y$ on segment $SC$ are such that $SX = XY =YC$. The lines $AX$ and $BY$ meet at point $Z$. Find the locus of centroids of triangles $ZAB$.

2014 Belarus Team Selection Test, 2

Tags: geometry , midpoint , locus
Given a triangle $ABC$. Let $S$ be the circle passing through $C$, centered at $A$. Let $X$ be a variable point on $S$ and let $K$ be the midpoint of the segment $CX$ . Find the locus of the midpoints of $BK$, when $X$ moves along $S$. (I. Gorodnin)

1969 IMO Longlists, 4

Tags: geometry , locus , conic
$(BEL 4)$ Let $O$ be a point on a nondegenerate conic. A right angle with vertex $O$ intersects the conic at points $A$ and $B$. Prove that the line $AB$ passes through a fixed point located on the normal to the conic through the point $O.$

1999 Ukraine Team Selection Test, 1

A triangle $ABC$ is given. Points $E,F,G$ are arbitrarily selected on the sides $AB,BC,CA$, respectively, such that $AF\perp EG$ and the quadrilateral $AEFG$ is cyclic. Find the locus of the intersection point of $AF$ and $EG$.

2004 All-Russian Olympiad Regional Round, 10.7

Circles $\omega_1$ and $\omega_2$ intersect at points $A$ and $B$. At point $A$ to $\omega_1$ and $\omega_2$ the tangents $\ell_1$ and $\ell_2$ are drawn respectively. The points $T_1$ and $T_2$ are chosen respectively on the circles $\omega_1$ and $\omega_2$ so that the angular measures of the arcs $T_1A$ and $AT_2$ are equal (the measure of the circular arc is calculated clockwise). The tangent $t_1$ at the point $ T_1$ to the circle $\omega_1$ intersects $\ell_2$ at the point $M_1$. Similarly, the tangent $t_2$ at the point $T_2$ to the circle $\omega_2$ intersects $\ell_1$ at point $M_2$. Prove that the midpoints of the segments $M_1M_2$ are on the same a straight line that does not depend on the position of points $T_1$, $T_2$.

1982 Bulgaria National Olympiad, Problem 6

Find the locus of centroids of equilateral triangles whose vertices lie on sides of a given square $ABCD$.

1964 Bulgaria National Olympiad, Problem 3

Tags: geometry , locus
There are given two intersecting lines $g_1,g_2$ and a point $P$ in their plane such that $\angle(g1,g2)\ne90^\circ$. Its symmetrical points on any point $M$ in the same plane with respect to the given lines are $M_1$ and $M_2$. Prove that: (a) the locus of the point $M$ for which the points $M_1,M_2$ and $P$ lie on a common line is a circle $k$ passing through the intersection point of $g_1$ and $g_2$. (b) the point $P$ is an orthocenter of a triangle, inscribed in the circle $k$ whose sides lie at the lines $g_1$ and $g_2$.

III Soros Olympiad 1996 - 97 (Russia), 10.7

Tags: geometry , locus
Let $A$ be a fixed point on a circle, $B$ and$ C$ be arbitrary points on the circle different from $A$ and at different distances. The bisector of the angle $\angle BAC$ intersects the chord $BC$ and the circle at points $K$ and $P$, $D$ is the projection of $A$ onto the straight line $BC$. A circle passing through points $K$, $P$ and $D$ intersects the straight line $AD$ for the second time at point $M$. Find the locus of points $M$.

1986 IMO Shortlist, 1

Let $A,B$ be adjacent vertices of a regular $n$-gon ($n\ge5$) with center $O$. A triangle $XYZ$, which is congruent to and initially coincides with $OAB$, moves in the plane in such a way that $Y$ and $Z$ each trace out the whole boundary of the polygon, with $X$ remaining inside the polygon. Find the locus of $X$.

1968 Spain Mathematical Olympiad, 5

Find the locus of the center of a rectangle, whose four vertices lies on the sides of a given triangle.

2017 Sharygin Geometry Olympiad, P20

Given a right-angled triangle $ABC$ and two perpendicular lines $x$ and $y$ passing through the vertex $A$ of its right angle. For an arbitrary point $X$ on $x$ define $y_B$ and $y_C$ as the reflections of $y$ about $XB$ and $ XC $ respectively. Let $Y$ be the common point of $y_b$ and $y_c$. Find the locus of $Y$ (when $y_b$ and $y_c$ do not coincide).

1966 IMO Longlists, 55

Given the vertex $A$ and the centroid $M$ of a triangle $ABC$, find the locus of vertices $B$ such that all the angles of the triangle lie in the interval $[40^\circ, 70^\circ].$

1989 Swedish Mathematical Competition, 4

Let $ABCD$ be a regular tetrahedron. Find the positions of point $P$ on the edge $BD$ such that the edge $CD$ is tangent to the sphere with diameter $AP$.