This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 300

2014 Junior Balkan Team Selection Tests - Romania, 3

Let $ABC$ be an acute triangle and let $O$ be its circumcentre. Now, let the diameter $PQ$ of circle $ABC$ intersects sides $AB$ and $AC$ in their interior at$ D$ and $E$, respectively. Now, let $F$ and $G$ be the midpoints of $CD$ and $BE$. Prove that $\angle FOG=\angle BAC$

2018 Yasinsky Geometry Olympiad, 6

In the quadrilateral $ABCD$, the points $E, F$, and $K$ are midpoints of the $AB, BC, AD$ respectively. Known that $KE \perp AB, K F \perp BC$, and the angle $\angle ABC = 118^o$. Find $ \angle ACD$ (in degrees).

2010 Balkan MO Shortlist, G2

Consider a cyclic quadrilateral such that the midpoints of its sides form another cyclic quadrilateral. Prove that the area of the smaller circle is less than or equal to half the area of the bigger circle

Kharkiv City MO Seniors - geometry, 2019.10.5

In triangle $ABC$, point$ I$ is incenter , $I_a$ is the $A$-excenter. Let $K$ be the intersection point of the $BC$ with the external bisector of the angle $BAC$, and $E$ be the midpoint of the arc $BAC$ of the circumcircle of triangle $ABC$. Prove that $K$ is the orthocenter of triangle $II_aE$.

2004 Oral Moscow Geometry Olympiad, 1

Tags: geometry , ratio , midpoint
$E$ and $F$ are the midpoints of the sides $BC$ and $AD$ of the convex quadrilateral $ABCD$. Prove that the segment $EF$ divides the diagonals $AC$ and $BD$ in the same ratio.

2017 Ukrainian Geometry Olympiad, 1

In the triangle $ABC$, ${{A}_{1}}$ and ${{C}_{1}} $ are the midpoints of sides $BC $ and $AB$ respectively. Point $P$ lies inside the triangle. Let $\angle BP {{C}_{1}} = \angle PCA$. Prove that $\angle BP {{A}_{1}} = \angle PAC $.

2012 India Regional Mathematical Olympiad, 1

Tags: ratio , midpoint , geometry
Let $ABC$ be a triangle and $D$ be a point on the segment $BC$ such that $DC = 2BD$. Let $E$ be the mid-point of $AC$. Let $AD$ and $BE$ intersect in $P$. Determine the ratios $BP:PE$ and $AP:PD$.

1963 German National Olympiad, 5

Given is a square with side length $a$. A distance $PQ$ of length $p$, where $p < a$, moves so that its end points are always on the sides of the square. What is the geometric locus of the midpoints of the segments $PQ$?

2000 Estonia National Olympiad, 4

Let $E$ be the midpoint of the side $AB$ of the parallelogram $ABCD$. Let $F$ be the projection of $B$ on $AC$. Prove that the triangle $ABF$ is isosceles

2010 Sharygin Geometry Olympiad, 6

Let $E, F$ be the midpoints of sides $BC, CD$ of square $ABCD$. Lines $AE$ and $BF$ meet at point $P$. Prove that $\angle PDA = \angle AED$.

1967 IMO Shortlist, 6

In making Euclidean constructions in geometry it is permitted to use a ruler and a pair of compasses. In the constructions considered in this question no compasses are permitted, but the ruler is assumed to have two parallel edges, which can be used for constructing two parallel lines through two given points whose distance is at least equal to the breadth of the rule. Then the distance between the parallel lines is equal to the breadth of the ruler. Carry through the following constructions with such a ruler. Construct: [b]a)[/b] The bisector of a given angle. [b]b)[/b] The midpoint of a given rectilinear line segment. [b]c)[/b] The center of a circle through three given non-collinear points. [b]d)[/b] A line through a given point parallel to a given line.

2008 Estonia Team Selection Test, 5

Points $A$ and $B$ are fixed on a circle $c_1$. Circle $c_2$, whose centre lies on $c_1$, touches line $AB$ at $B$. Another line through $A$ intersects $c_2$ at points $D$ and $E$, where $D$ lies between $A$ and $E$. Line $BD$ intersects $c_1$ again at $F$. Prove that line $EB$ is tangent to $c_1$ if and only if $D$ is the midpoint of the segment $BF$.

1993 Abels Math Contest (Norwegian MO), 1a

Let $ABCD$ be a convex quadrilateral and $A',B'C',D'$ be the midpoints of $AB,BC,CD,DA$, respectively. Let $a,b,c,d$ denote the areas of quadrilaterals into which lines $A'C'$ and $B'D'$ divide the quadrilateral $ABCD$ (where a corresponds to vertex $A$ etc.). Prove that $a+c = b+d$.

Kyiv City MO Seniors 2003+ geometry, 2006.11.3

Let $O$ be the center of the circle $\omega$ circumscribed around the acute-angled triangle $\vartriangle ABC$, and $W$ be the midpoint of the arc $BC$ of the circle $\omega$, which does not contain the point $A$, and $H$ be the point of intersection of the heights of the triangle $\vartriangle ABC$. Find the angle $\angle BAC$, if $WO = WH$. (O. Clurman)

2017 Swedish Mathematical Competition, 3

Given the segments $AB$ and $CD$ not necessarily on the same plane. Point $X$ is the midpoint of the segment $AB$, and the point $Y$ is the midpoint of $CD$. Given that point $X$ is not on line $CD$, and that point $Y$ is not on line $AB$, prove that $2 | XY | \le | AD | + | BC |$. When is equality achieved?

2017 Thailand TSTST, 1

In $\vartriangle ABC, D, E, F$ are the midpoints of $AB, BC, CA$ respectively. Denote by $O_A, O_B, O_C$ the incenters of $\vartriangle ADF, \vartriangle BED, \vartriangle CFE$ respectively. Prove that $O_AE, O_BF, O_CD$ are concurrent.

2017 Federal Competition For Advanced Students, P2, 5

Let $ABC$ be an acute triangle. Let $H$ denote its orthocenter and $D, E$ and $F$ the feet of its altitudes from $A, B$ and $C$, respectively. Let the common point of $DF$ and the altitude through $B$ be $P$. The line perpendicular to $BC$ through $P$ intersects $AB$ in $Q$. Furthermore, $EQ$ intersects the altitude through $A$ in $N$. Prove that $N$ is the midpoint of $AH$. Proposed by Karl Czakler

2022 Harvard-MIT Mathematics Tournament, 5

Let $ABC$ be a triangle with centroid $G$, and let $E$ and $F$ be points on side $BC$ such that $BE = EF = F C$. Points $X$ and $Y$ lie on lines $AB$ and $AC$, respectively, so that $X$, $Y$ , and $G$ are not collinear. If the line through $E$ parallel to $XG$ and the line through $F$ parallel to $Y G$ intersect at $P\ne G$, prove that $GP$ passes through the midpoint of $XY$.

2003 German National Olympiad, 2

There are four circles $k_1 , k_2 , k_3$ and $k_4$ of equal radius inside the triangle $ABC$. The circle $k_1$ touches the sides $AB, CA$ and the circle $k_4 $, $k_2$ touches the sides $AB,BC$ and $k_4$, and $k_3$ touches the sides $AC, BC$ and $k_4.$ Prove that the center of $k_4$ lies on the line connecting the incenter and circumcenter of $ABC.$

2004 Junior Balkan Team Selection Tests - Romania, 2

Let $M,N, P$ be the midpoints of the sides $BC,CA,AB$ of the triangle $ABC$, respectively, and let $G$ be the centroid of the triangle. Prove that if $BMGP$ is cyclic and $2BN = \sqrt3 AB$ , then triangle $ABC$ is equilateral.

1990 All Soviet Union Mathematical Olympiad, 512

The line joining the midpoints of two opposite sides of a convex quadrilateral makes equal angles with the diagonals. Show that the diagonals are equal.

2006 Sharygin Geometry Olympiad, 19

Through the midpoints of the sides of the triangle $T$, straight lines are drawn perpendicular to the bisectors of the opposite angles of the triangle. These lines formed a triangle $T_1$. Prove that the center of the circle circumscribed about $T_1$ is in the midpoint of the segment formed by the center of the inscribed circle and the intersection point of the heights of triangle $T$.

2014 Sharygin Geometry Olympiad, 16

Given a triangle $ABC$ and an arbitrary point $D$.The lines passing through $D$ and perpendicular to segments $DA, DB, DC$ meet lines $BC, AC, AB$ at points $A_1, B_1, C_1$ respectively. Prove that the midpoints of segments $AA_1, BB_1, CC_1$ are collinear.

2016 Czech-Polish-Slovak Junior Match, 1

Let $ABC$ be a right-angled triangle with hypotenuse $AB$. Denote by $D$ the foot of the altitude from $C$. Let $Q, R$, and $P$ be the midpoints of the segments $AD, BD$, and $CD$, respectively. Prove that $\angle AP B + \angle QCR = 180^o$. Czech Republic

2000 Tournament Of Towns, 1

Tags: area , geometry , midpoint
The diagonals of a convex quadrilateral $ABCD$ meet at $P$. The sum of the areas of triangles $PAB$ and $PCD$ is equal to the sum of areas of triangles $PAD$ and $PCB$. Prove that $P$ is the midpoint of either $AC$ or $BD$. (Folklore)