This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 300

2015 Oral Moscow Geometry Olympiad, 4

In triangle $ABC$, point $M$ is the midpoint of $BC, P$ is the intersection point of the tangents at points $B$ and $C$ of the circumscribed circle, $N$ is the midpoint of the segment $MP$. The segment $AN$ intersects the circumscribed circle at point $Q$. Prove that $\angle PMQ = \angle MAQ$.

1988 Tournament Of Towns, (165) 2

We are given convex quadrilateral $ABCD$. The midpoints of $BC$ and $DA$ are $M$ and $N$ respectively. The diagonal $AC$ divides $MN$ in half. Prove that the areas of triangles $ABC$ and $ACD$ are equal .

1953 Moscow Mathematical Olympiad, 240

Let $AB$ and $A_1B_1$ be two skew segments, $O$ and $O_1$ their respective midpoints. Prove that $OO_1$ is shorter than a half sum of $AA_1$ and $BB_1$.

2006 Sharygin Geometry Olympiad, 19

Through the midpoints of the sides of the triangle $T$, straight lines are drawn perpendicular to the bisectors of the opposite angles of the triangle. These lines formed a triangle $T_1$. Prove that the center of the circle circumscribed about $T_1$ is in the midpoint of the segment formed by the center of the inscribed circle and the intersection point of the heights of triangle $T$.

Kyiv City MO Juniors 2003+ geometry, 2018.7.41

In the quadrilateral $ABCD$ point $E$ - the midpoint of the side $AB$, point $F$ - the midpoint of the side $BC$, point $G$ - the midpoint $AD$ . It turned out that the segment $GE$ is perpendicular to $AB$, and the segment $GF$ is perpendicular to the segment $BC$. Find the value of the angle $GCD$, if it is known that $\angle ADC = 70 {} ^ \circ$.

1982 IMO, 2

A non-isosceles triangle $A_{1}A_{2}A_{3}$ has sides $a_{1}$, $a_{2}$, $a_{3}$ with the side $a_{i}$ lying opposite to the vertex $A_{i}$. Let $M_{i}$ be the midpoint of the side $a_{i}$, and let $T_{i}$ be the point where the inscribed circle of triangle $A_{1}A_{2}A_{3}$ touches the side $a_{i}$. Denote by $S_{i}$ the reflection of the point $T_{i}$ in the interior angle bisector of the angle $A_{i}$. Prove that the lines $M_{1}S_{1}$, $M_{2}S_{2}$ and $M_{3}S_{3}$ are concurrent.

2015 Iran Geometry Olympiad, 2

In acute-angled triangle $ABC$, $BH$ is the altitude of the vertex $B$. The points $D$ and $E$ are midpoints of $AB$ and $AC$ respectively. Suppose that $F$ be the reflection of $H$ with respect to $ED$. Prove that the line $BF$ passes through circumcenter of $ABC$. by Davood Vakili

2009 Federal Competition For Advanced Students, P1, 4

Let $D, E$, and $F$ be respectively the midpoints of the sides $BC, CA$, and $AB$ of $\vartriangle ABC$. Let $H_a, H_b, H_c$ be the feet of perpendiculars from $A, B, C$ to the opposite sides, respectively. Let $P, Q, R$ be the midpoints of the $H_bH_c, H_cH_a$, and $H_aH_b$ respectively. Prove that $PD, QE$, and $RF$ are concurrent.

2018 Austria Beginners' Competition, 2

Let $ABC$ be an acute-angled triangle, $M$ the midpoint of the side $AC$ and $F$ the foot on $AB$ of the altitude through the vertex $C$. Prove that $AM = AF$ holds if and only if $\angle BAC = 60^o$. (Karl Czakler)

1983 IMO Longlists, 69

Let $A$ be one of the two distinct points of intersection of two unequal coplanar circles $C_1$ and $C_2$ with centers $O_1$ and $O_2$ respectively. One of the common tangents to the circles touches $C_1$ at $P_1$ and $C_2$ at $P_2$, while the other touches $C_1$ at $Q_1$ and $C_2$ at $Q_2$. Let $M_1$ be the midpoint of $P_1Q_1$ and $M_2$ the midpoint of $P_2Q_2$. Prove that $\angle O_1AO_2=\angle M_1AM_2$.

2016 Czech-Polish-Slovak Junior Match, 1

Let $ABC$ be a right-angled triangle with hypotenuse $AB$. Denote by $D$ the foot of the altitude from $C$. Let $Q, R$, and $P$ be the midpoints of the segments $AD, BD$, and $CD$, respectively. Prove that $\angle AP B + \angle QCR = 180^o$. Czech Republic

2014 Junior Balkan Team Selection Tests - Romania, 4

In a circle, consider two chords $[AB], [CD]$ that intersect at $E$, lines $AC$ and $BD$ meet at $F$. Let $G$ be the projection of $E$ onto $AC$. We denote by $M,N,K$ the midpoints of the segment lines $[EF] ,[EA]$ and $[AD]$, respectively. Prove that the points $M, N,K,G$ are concyclic.

2014 Cuba MO, 6

Let $ABC$ be an isosceles triangle with $AB = AC$. Points $D$, $E$ and $F$ are on sides $BC$, $CA $ and $AB$ respectively, such that $\angle FDE =\angle ABC$ and $FE$ is not parallel to $BC$. Prove that $BC$ is tangent to the circumcircle of the triangle $DEF$, if and only if, $D$ is the midpoint of $BC$.

2015 Junior Regional Olympiad - FBH, 3

Tags: midpoint , geometry
Let $D$ be a midpoint of $BC$ of triangle $ABC$. On side $AB$ is given point $E$, and on side $AC$ is given point $F$ such that $\angle EDF = 90^{\circ}$. Prove that $BE+CF>EF$

2002 Junior Balkan Team Selection Tests - Romania, 3

Let $ABC$ be a triangle and $a = BC, b = CA$ and $c = AB$ be the lengths of its sides. Points $D$ and $E$ lie in the same halfplane determined by $BC$ as $A$. Suppose that $DB = c, CE = b$ and that the area of $DECB$ is maximal. Let $F$ be the midpoint of $DE$ and let $FB = x$. Prove that $FC = x$ and $4x^3 = (a^2+b^2 + c^2)x + abc$.

2012 Czech-Polish-Slovak Junior Match, 2

On the circle $k$, the points $A,B$ are given, while $AB$ is not the diameter of the circle $k$. Point $C$ moves along the long arc $AB$ of circle $k$ so that the triangle $ABC$ is acute. Let $D,E$ be the feet of the altitudes from $A, B$ respectively. Let $F$ be the projection of point $D$ on line $AC$ and $G$ be the projection of point $E$ on line $BC$. (a) Prove that the lines $AB$ and $FG$ are parallel. (b) Determine the set of midpoints $S$ of segment $FG$ while along all allowable positions of point $C$.

2016 Latvia Baltic Way TST, 15

Let $ABC$ be a triangle. Let its altitudes $AD$, $BE$ and $CF$ concur at $H$. Let $K, L$ and $M$ be the midpoints of $BC$, $CA$ and $AB$, respectively. Prove that, if $\angle BAC = 60^o$, then the midpoints of the segments $AH$, $DK$, $EL$, $FM$ are concyclic.

2023 Yasinsky Geometry Olympiad, 5

Tags: geometry , midpoint
Let $ABC$ be a triangle and $\ell$ be a line parallel to $BC$ that passes through vertex $A$. Draw two circles congruent to the circle inscribed in triangle $ABC$ and tangent to line $\ell$, $AB$ and $BC$ (see picture). Lines $DE$ and $FG$ intersect at point $P$. Prove that $P$ lies on $BC$ if and only if $P$ is the midpoint of $BC$. (Mykhailo Plotnikov) [img]https://cdn.artofproblemsolving.com/attachments/8/b/2dacf9a6d94a490511a2dc06fbd36f79f25eec.png[/img]

2007 Estonia Math Open Junior Contests, 2

The sides $AB, BC, CD$ and $DA$ of the convex quadrilateral $ABCD$ have midpoints $E, F, G$ and $H$. Prove that the triangles $EFB, FGC, GHD$ and $HEA$ can be put together into a parallelogram equal to $EFGH$.

2010 Dutch BxMO TST, 1

Let $ABCD$ be a trapezoid with $AB // CD$, $2|AB| = |CD|$ and $BD \perp BC$. Let $M$ be the midpoint of $CD$ and let $E$ be the intersection $BC$ and $AD$. Let $O$ be the intersection of $AM$ and $BD$. Let $N$ be the intersection of $OE$ and $AB$. (a) Prove that $ABMD$ is a rhombus. (b) Prove that the line $DN$ passes through the midpoint of the line segment $BE$.

2015 Sharygin Geometry Olympiad, 5

Let $BM$ be a median of nonisosceles right-angled triangle $ABC$ ($\angle B = 90^o$), and $Ha, Hc$ be the orthocenters of triangles $ABM, CBM$ respectively. Prove that lines $AH_c$ and $CH_a$ meet on the medial line of triangle $ABC$. (D. Svhetsov)

1963 Dutch Mathematical Olympiad, 2

The straight lines $k$ and $\ell$ intersect at right angles. A line intersects $k$ in $A$ and $\ell$ in $B$. Consider all straight line segments $PQ$ ($P$ on $k$ and $Q$ on $\ell$), which makes an angle of $45^o$ with $AB$. (a) Determine the locus of the midpoints of the line segments $PQ$, (b) If the perpendicular bisector of such a line segment $PQ$ intersects the line $k$ at $K$ and the line $\ell$ at $L$, then prove that $KL \ge PQ$. [hide=original wording of second sentence]De loodrechte snijlijn van k en l snijdt k in A en t in B[/hide]

2009 Balkan MO Shortlist, G5

Let $ABCD$ be a convex quadrilateral and $S$ an arbitrary point in its interior. Let also $E$ be the symmetric point of $S$ with respect to the midpoint $K$ of the side $AB$ and let $Z$ be the symmetric point of $S$ with respect to the midpoint $L$ of the side $CD$. Prove that $(AECZ) = (EBZD) = (ABCD)$.

2023 Brazil National Olympiad, 2

Consider a triangle $ABC$ with $AB < AC$ and let $H$ and $O$ be its orthocenter and circumcenter, respectively. A line starting from $B$ cuts the lines $AO$ and $AH$ at $M$ and $M'$ so that $M'$ is the midpoint of $BM$. Another line starting from $C$ cuts the lines $AH$ and $AO$ at $N$ and $N'$ so that $N'$ is the midpoint of $CN$. Prove that $M, M', N, N'$ are on the same circle.

2005 Sharygin Geometry Olympiad, 9

Let $O$ be the center of a regular triangle $ABC$. From an arbitrary point $P$ of the plane, the perpendiculars were drawn on the sides of the triangle. Let $M$ denote the intersection point of the medians of the triangle , having vertices the feet of the perpendiculars. Prove that $M$ is the midpoint of the segment $PO$.