This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 300

2015 BAMO, 4

In a quadrilateral, the two segments connecting the midpoints of its opposite sides are equal in length. Prove that the diagonals of the quadrilateral are perpendicular. (In other words, let $M,N,P,$ and $Q$ be the midpoints of sides $AB,BC,CD,$ and $DA$ in quadrilateral $ABCD$. It is known that segments $MP$ and $NQ$ are equal in length. Prove that $AC$ and $BD$ are perpendicular.)

1949-56 Chisinau City MO, 31

Find the locus of the points that are the midpoints of the chords of the secant to the given circle and passing through a given point.

2016 May Olympiad, 3

Tags: midpoint , geometry
In a triangle $ABC$, let $D$ and $E$ point in the sides $BC$ and $AC$ respectively. The segments $AD$ and $BE$ intersects in $O$, let $r$ be line (parallel to $AB$) such that $r$ intersects $DE$ in your midpoint, show that the triangle $ABO$ and the quadrilateral $ODCE$ have the same area.

2017 Sharygin Geometry Olympiad, P19

Let cevians $AA', BB'$ and $CC'$ of triangle $ABC$ concur at point $P.$ The circumcircle of triangle $PA'B'$ meets $AC$ and $BC$ at points $M$ and $N$ respectively, and the circumcircles of triangles $PC'B'$ and $PA'C'$ meet $AC$ and $BC$ for the second time respectively at points $K$ and $L$. The line $c$ passes through the midpoints of segments $MN$ and $KL$. The lines $a$ and $b$ are defined similarly. Prove that $a$, $b$ and $c$ concur.

2016 Sharygin Geometry Olympiad, P1

A trapezoid $ABCD$ with bases $AD$ and $BC$ is such that $AB = BD$. Let $M$ be the midpoint of $DC$. Prove that $\angle MBC$ = $\angle BCA$.

2014 Danube Mathematical Competition, 3

Let $ABC$ be a triangle with $\angle A<90^o, AB \ne AC$. Denote $H$ the orthocenter of triangle $ABC$, $N$ the midpoint of segment $[AH]$, $M$ the midpoint of segment $[BC]$ and $D$ the intersection point of the angle bisector of $\angle BAC$ with the segment $[MN]$. Prove that $<ADH=90^o$

2017 Swedish Mathematical Competition, 3

Given the segments $AB$ and $CD$ not necessarily on the same plane. Point $X$ is the midpoint of the segment $AB$, and the point $Y$ is the midpoint of $CD$. Given that point $X$ is not on line $CD$, and that point $Y$ is not on line $AB$, prove that $2 | XY | \le | AD | + | BC |$. When is equality achieved?

Estonia Open Junior - geometry, 2014.1.5

In a triangle $ABC$ the midpoints of $BC, CA$ and $AB$ are $D, E$ and $F$, respectively. Prove that the circumcircles of triangles $AEF, BFD$ and $CDE$ intersect all in one point.

2011 Romania National Olympiad, 3

In the convex quadrilateral $ABCD$ we have that $\angle BCD = \angle ADC \ge 90 ^o$. The bisectors of $\angle BAD$ and $\angle ABC$ intersect in $M$. Prove that if $M \in CD$, then $M$ is the middle of $CD$.

1982 IMO Shortlist, 9

Let $ABC$ be a triangle, and let $P$ be a point inside it such that $\angle PAC = \angle PBC$. The perpendiculars from $P$ to $BC$ and $CA$ meet these lines at $L$ and $M$, respectively, and $D$ is the midpoint of $AB$. Prove that $DL = DM.$

2017 Switzerland - Final Round, 8

Let $ABC$ be an isosceles triangle with vertex $A$ and $AB> BC$. Let $k$ be the circle with center $A$ passsing through $B$ and $C$. Let $H$ be the second intersection of $k$ with the altitude of the triangle $ABC$ through $B$. Further let $G$ be the second intersection of $k$ with the median through $B$ in triangle $ABC$. Let $X$ be the intersection of the lines $AC$ and $GH$. Show that $C$ is the midpoint of $AX$.

Cono Sur Shortlist - geometry, 2003.G4

In a triangle $ABC$ , let $P$ be a point on its circumscribed circle (on the arc $AC$ that does not contain $B$). Let $H,H_1,H_2$ and $H_3$ be the orthocenters of triangles $ABC, BCP, ACP$ and $ABP$, respectively. Let $L = PB \cap AC$ and $J = HH_2 \cap H_1H_3$. If $M$ and $N$ are the midpoints of $JH$ and $LP$, respectively, prove that $MN$ and $JL$ intersect at their midpoint.

1997 Austrian-Polish Competition, 4

In a trapezoid $ABCD$ with $AB // CD$, the diagonals $AC$ and $BD$ intersect at point $E$. Let $F$ and $G$ be the orthocenters of the triangles $EBC$ and $EAD$. Prove that the midpoint of $GF$ lies on the perpendicular from $E$ to $AB$.

1955 Moscow Mathematical Olympiad, 297

Given two distinct nonintersecting circles none of which is inside the other. Find the locus of the midpoints of all segments whose endpoints lie on the circles.

2020-IMOC, G6

Let $ABC$ be a triangle, and $M_a, M_b, M_c$ be the midpoints of $BC, CA, AB$, respectively. Extend $M_bM_c$ so that it intersects $\odot (ABC)$ at $P$. Let $AP$ and $BC$ intersect at $Q$. Prove that the tangent at $A$ to $\odot(ABC)$ and the tangent at $P$ to $\odot (P QM_a)$ intersect on line $BC$. (Li4)

2009 Dutch IMO TST, 2

Let $ABC$ be a triangle, $P$ the midpoint of $BC$, and $Q$ a point on segment $CA$ such that $|CQ| = 2|QA|$. Let $S$ be the intersection of $BQ$ and $AP$. Prove that $|AS| = |SP|$.

1998 Tournament Of Towns, 3

$AB$ and $CD$ are segments lying on the two sides of an angle whose vertex is $O$. $A$ is between $O$ and $B$, and $C$ is between $O$ and $D$ . The line connecting the midpoints of the segments $AD$ and $BC$ intersects $AB$ at $M$ and $CD$ at $N$. Prove that $\frac{OM}{ON}=\frac{AB}{CD}$ (V Senderov)

2020 Iranian Geometry Olympiad, 1

Tags: midpoint , geometry
Let $M,N,P$ be midpoints of $BC,AC$ and $AB$ of triangle $\triangle ABC$ respectively. $E$ and $F$ are two points on the segment $\overline{BC}$ so that $\angle NEC = \frac{1}{2} \angle AMB$ and $\angle PFB = \frac{1}{2} \angle AMC$. Prove that $AE=AF$. [i]Proposed by Alireza Dadgarnia[/i]

2011 Peru MO (ONEM), 3

Let $ABC$ be a right triangle, right in $B$. Inner bisectors are drawn $CM$ and $AN$ that intersect in $I$. Then, the $AMIP$ and $CNIQ$ parallelograms are constructed. Let $U$ and $V$ are the midpoints of the segments $AC$ and $PQ$, respectively. Prove that $UV$ is perpendicular to $AC$.

Kharkiv City MO Seniors - geometry, 2019.10.5

In triangle $ABC$, point$ I$ is incenter , $I_a$ is the $A$-excenter. Let $K$ be the intersection point of the $BC$ with the external bisector of the angle $BAC$, and $E$ be the midpoint of the arc $BAC$ of the circumcircle of triangle $ABC$. Prove that $K$ is the orthocenter of triangle $II_aE$.

2022 Bolivia IMO TST, P3

On $\triangle ABC$, let $M$ the midpoint of $AB$ and $N$ the midpoint of $CM$. Let $X$ a point such that $\angle XMC=\angle MBC$ and $\angle XCM=\angle MCB$ with $X,B$ in opposite sides of line $CM$. Let $\Omega$ the circumcircle of triangle $\triangle AMX$ [b]a)[/b] Show that $CM$ is tangent to $\Omega$ [b]b)[/b] Show that the lines $NX$ and $AC$ meet at $\Omega$

1994 Bundeswettbewerb Mathematik, 3

Given a triangle $A_1 A_2 A_3$ and a point $P$ inside. Let $B_i$ be a point on the side opposite to $A_i$ for $i=1,2,3$, and let $C_i$ and $D_i$ be the midpoints of $A_i B_i$ and $P B_i$, respectively. Prove that the triangles $C_1 C_2 C_3$ and $D_1 D_2 D_3$ have equal area.

2013 JBMO Shortlist, 6

Let $P$ and $Q$ be the midpoints of the sides $BC$ and $CD$, respectively in a rectangle $ABCD$. Let $K$ and $M$ be the intersections of the line $PD$ with the lines $QB$ and $QA$, respectively, and let $N$ be the intersection of the lines $PA$ and $QB$. Let $X$, $Y$ and $Z$ be the midpoints of the segments $AN$, $KN$ and $AM$, respectively. Let $\ell_1$ be the line passing through $X$ and perpendicular to $MK$, $\ell_2$ be the line passing through $Y$ and perpendicular to $AM$ and $\ell_3$ the line passing through $Z$ and perpendicular to $KN$. Prove that the lines $\ell_1$, $\ell_2$ and $\ell_3$ are concurrent.

2005 Oral Moscow Geometry Olympiad, 6

Let $A_1,B_1,C_1$ are the midpoints of the sides of the triangle $ABC, I$ is the center of the circle inscribed in it. Let $C_2$ be the intersection point of lines $C_1 I$ and $A_1B_1$. Let $C_3$ be the intersection point of lines $CC_2$ and $AB$. Prove that line $IC_3$ is perpendicular to line $AB$. (A. Zaslavsky)

2015 Sharygin Geometry Olympiad, 1

In trapezoid $ABCD$ angles $A$ and $B$ are right, $AB = AD, CD = BC + AD, BC < AD$. Prove that $\angle ADC = 2\angle ABE$, where $E$ is the midpoint of segment $AD$. (V. Yasinsky)