This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 131

2024 Polish MO Finals, 6

Let $ABCD$ be a parallelogram. Let $X \notin AC $ lie inside $ABCD$ so that $\angle AXB = \angle CXD = 90^ {\circ}$ and $\Omega$ denote the circumcircle of $AXC$. Consider a diameter $EF$ of $\Omega$ and assume neither $E, \ X, \ B$ nor $F, \ X, \ D$ are collinear. Let $K \neq X$ be an intersection point of circumcircles of $BXE$ and $DXF$ and $L \neq X$ be such point on $\Omega$ so that $\angle KXL = 90^{\circ}$. Prove that $AB = KL$.

Indonesia MO Shortlist - geometry, g2

Given an acute triangle $ABC$. The inscribed circle of triangle $ABC$ is tangent to $AB$ and $AC$ at $X$ and $Y$ respectively. Let $CH$ be the altitude. The perpendicular bisector of the segment $CH$ intersects the line $XY$ at $Z$. Prove that $\angle BZC = 90^o.$

2015 India Regional MathematicaI Olympiad, 1

In a cyclic quadrilateral $ABCD$, let the diagonals $AC$ and $BD$ intersect at $X$. Let the circumcircles of triangles $AXD$ and $BXC$ intersect again at $Y$ . If $X$ is the incentre of triangle $ABY$ , show that $\angle CAD = 90^o$.

2020 Thailand TST, 1

Let $ABC$ be a triangle with circumcircle $\Gamma$. Let $\omega_0$ be a circle tangent to chord $AB$ and arc $ACB$. For each $i = 1, 2$, let $\omega_i$ be a circle tangent to $AB$ at $T_i$ , to $\omega_0$ at $S_i$ , and to arc $ACB$. Suppose $\omega_1 \ne \omega_2$. Prove that there is a circle passing through $S_1, S_2, T_1$, and $T_2$, and tangent to $\Gamma$ if and only if $\angle ACB = 90^o$. .

2006 Junior Balkan Team Selection Tests - Romania, 2

Let $C (O)$ be a circle (with center $O$ ) and $A, B$ points on the circle with $\angle AOB = 90^o$. Circles $C_1 (O_1)$ and $C_2 (O_2)$ are tangent internally with circle $C$ at $A$ and $B$, respectively, and, also, are tangent to each other. Consider another circle $C_3 (O_3)$ tangent externally to the circles $C_1, C_2$ and tangent internally to circle $C$, located inside angle $\angle AOB$. Show that the points $O, O_1, O_2, O_3$ are the vertices of a rectangle.

2003 Oral Moscow Geometry Olympiad, 2

In a convex quadrilateral $ABCD$, $\angle ABC = 90^o$ , $\angle BAC = \angle CAD$, $AC = AD, DH$ is the alltitude of the triangle $ACD$. In what ratio does the line $BH$ divide the segment $CD$?

2018 Dutch IMO TST, 3

Let $ABC$ be an acute triangle, and let $D$ be the foot of the altitude through $A$. On $AD$, there are distinct points $E$ and $F$ such that $|AE| = |BE|$ and $|AF| =|CF|$. A point$ T \ne D$ satis es $\angle BTE = \angle CTF = 90^o$. Show that $|TA|^2 =|TB| \cdot |TC|$.

2008 Postal Coaching, 1

In triangle $ABC,\angle B > \angle C, T$ is the midpoint of arc $BAC$ of the circumcicle of $ABC$, and $I$ is the incentre of $ABC$. Let $E$ be point such that $\angle AEI = 90^0$ and $AE$ is parallel to $BC$. If $TE$ intersects the circumcircle of $ABC$ at $P(\ne T)$ and $\angle B = \angle IPB$, determine $\angle A$.

2019 New Zealand MO, 2

Let $X$ be the intersection of the diagonals $AC$ and $BD$ of convex quadrilateral $ABCD$. Let $P$ be the intersection of lines $AB$ and $CD$, and let $Q$ be the intersection of lines $PX$ and $AD$. Suppose that $\angle ABX = \angle XCD = 90^o$. Prove that $QP$ is the angle bisector of $\angle BQC$.

2017 Latvia Baltic Way TST, 10

In an obtuse triangle $ABC$, for which $AC < AB$, the radius of the inscribed circle is $R$, the midpoint of its arc $BC$ (which does not contain $A$) is $S$. A point $T$ is placed on the extension of altitude $AD$ such that $D$ is between $ A$ and $T$ and $AT = 2R$. Prove that $\angle AST = 90^o$.

Denmark (Mohr) - geometry, 2016.3

Prove that all quadrilaterals $ABCD$ where $\angle B = \angle D = 90^o$, $|AB| = |BC|$ and $|AD| + |DC| = 1$, have the same area. [img]https://1.bp.blogspot.com/-55lHuAKYEtI/XzRzDdRGDPI/AAAAAAAAMUk/n8lYt3fzFaAB410PQI4nMEz7cSSrfHEgQCLcBGAsYHQ/s0/2016%2Bmohr%2Bp3.png[/img]

2015 Dutch IMO TST, 1

In a quadrilateral $ABCD$ we have $\angle A = \angle C = 90^o$. Let $E$ be a point in the interior of $ABCD$. Let $M$ be the midpoint of $BE$. Prove that $\angle ADB = \angle EDC$ if and only if $|MA| = |MC|$.

1999 Poland - Second Round, 4

Let $P$ be a point inside a triangle $ABC$ such that $\angle PAB = \angle PCA$ and $\angle PAC = \angle PBA$. If $O \ne P$ is the circumcenter of $\triangle ABC$, prove that $\angle APO$ is right.

Kyiv City MO Juniors 2003+ geometry, 2018.7.4

Inside the triangle $ABC $, the point $P $ is selected so that $BC = AP $ and $\angle APC = 180 {} ^ \circ - \angle ABC $. On the side $AB $ there is a point $K $, for which $AK = KB + PC $. Prove that $\angle AKC = 90 {} ^ \circ $. (Danilo Hilko)

2006 MOP Homework, 2

Points $P$ and $Q$ lies inside triangle $ABC$ such that $\angle ACP =\angle BCQ$ and $\angle CAP = \angle BAQ$. Denote by $D,E$, and $F$ the feet of perpendiculars from $P$ to lines $BC,CA$, and $AB$, respectively. Prove that if $\angle DEF = 90^o$, then $Q$ is the orthocenter of triangle $BDF$.

2015 Dutch IMO TST, 1

In a quadrilateral $ABCD$ we have $\angle A = \angle C = 90^o$. Let $E$ be a point in the interior of $ABCD$. Let $M$ be the midpoint of $BE$. Prove that $\angle ADB = \angle EDC$ if and only if $|MA| = |MC|$.

1985 Poland - Second Round, 6

There are various points in space $ A, B, C_0, C_1, C_2 $, with $ |AC_i| = 2 |BC_i| $ for $ i = 0,1,2 $ and $ |C_1C_2|=\frac{4}{3}|AB| $. Prove that the angle $ C_1C_0C_2 $ is right and the points $ A, B, C_1, C_2 $ lie on one plane.

Indonesia MO Shortlist - geometry, g5

Two circles intersect at points $A$ and $B$. The line $\ell$ through A intersects the circles at $C$ and $D$, respectively. Let $M, N$ be the midpoints of arc $BC$ and arc $BD$. which does not contain $A$, and suppose that $K$ is the midpoint of the segment $CD$ . Prove that $\angle MKN=90^o$.

1998 Tuymaada Olympiad, 8

Given the pyramid $ABCD$. Let $O$ be the midpoint of edge $AC$. Given that $DO$ is the height of the pyramid, $AB=BC=2DO$ and the angle $ABC$ is right. Cut this pyramid into $8$ equal and similar to it pyramids.

1992 Swedish Mathematical Competition, 5

A triangle has sides $a, b, c$ with longest side $c$, and circumradius $R$. Show that if $a^2 + b^2 = 2cR$, then the triangle is right-angled.

1978 Vietnam National Olympiad, 5

A river has a right-angle bend. Except at the bend, its banks are parallel lines of distance $a$ apart. At the bend the river forms a square with the river flowing in across one side and out across an adjacent side. What is the longest boat of length $c$ and negligible width which can pass through the bend?

2018 Peru MO (ONEM), 3

Let $ABC$ be an acute triangle such that $BA = BC$. On the sides $BA$ and $BC$ points $D$ and $E$ are chosen respectively, such that $DE$ and $AC$ are parallel. Let $H$ be the orthocenter of the triangle $DBE$ and $M$ be the midpoint of $AE$. If $\angle HMC = 90^o$, determine the measure of angle $\angle ABC$.

2018 Grand Duchy of Lithuania, 3

The altitudes $AD$ and $BE$ of an acute triangle $ABC$ intersect at point $H$. Let $F$ be the intersection of the line $AB$ and the line that is parallel to the side BC and goes through the circumcenter of $ABC$. Let $M$ be the midpoint of the segment $AH$. Prove that $\angle CMF = 90^o$

Kvant 2024, M2809

Given is a triangle $ABC$ and the points $M, P$ lie on the segments $AB, BC$, respectively, such that $AM=BC$ and $CP=BM$. If $AP$ and $CM$ meet at $O$ and $2\angle AOM=\angle ABC$, find the measure of $\angle ABC$.

2012 Dutch IMO TST, 4

Let $\vartriangle ABC$ be a triangle. The angle bisector of $\angle CAB$ intersects$ BC$ at $L$. On the interior of line segments $AC$ and $AB$, two points, $M$ and $N$, respectively, are chosen in such a way that the lines $AL, BM$ and $CN$ are concurrent, and such that $\angle AMN = \angle ALB$. Prove that $\angle NML = 90^o$.