This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 321

Cono Sur Shortlist - geometry, 1993.8

In a triangle $ABC$, let $D$, $E$ and $F$ be the touchpoints of the inscribed circle and the sides $AB$, $BC$ and $CA$. Show that the triangles $DEF$ and $ABC$ are similar if and only if $ABC$ is equilateral.

2006 AIME Problems, 9

Circles $\mathcal{C}_1$, $\mathcal{C}_2$, and $\mathcal{C}_3$ have their centers at (0,0), (12,0), and (24,0), and have radii 1, 2, and 4, respectively. Line $t_1$ is a common internal tangent to $\mathcal{C}_1$ and $\mathcal{C}_2$ and has a positive slope, and line $t_2$ is a common internal tangent to $\mathcal{C}_2$ and $\mathcal{C}_3$ and has a negative slope. Given that lines $t_1$ and $t_2$ intersect at $(x,y)$, and that $x=p-q\sqrt{r}$, where $p$, $q$, and $r$ are positive integers and $r$ is not divisible by the square of any prime, find $p+q+r$.

2001 Taiwan National Olympiad, 4

Let $\Gamma$ be the circumcircle of a fixed triangle $ABC$, and let $M$ and $N$ be the midpoints of the arcs $BC$ and $CA$, respectively. For any point $X$ on the arc $AB$, let $O_1$ and $O_2$ be the incenters of $\vartriangle XAC$ and $\vartriangle XBC$, and let the circumcircle of $\vartriangle XO_1O_2$ intersect $\Gamma$ at $X$ and $Q$. Prove that triangles $QNO_1$ and $QMO_2$ are similar, and find all possible locations of point $Q$.

1992 AMC 12/AHSME, 24

Let $ABCD$ be a parallelogram of area $10$ with $AB = 3$ and $BC = 5$. Locate $E$, $F$ and $G$ on segments $\overline{AB}$, $\overline{BC}$ and $\overline{AD}$, respectively, with $AE = BF = AG = 2$. Let the line through $G$ parallel to $\overline{EF}$ intersect $\overline{CD}$ at $H$. The area of the quadrilateral $EFHG$ is $ \textbf{(A)}\ 4\qquad\textbf{(B)}\ 4.5\qquad\textbf{(C)}\ 5\qquad\textbf{(D)}\ 5.5\qquad\textbf{(E)}\ 6 $

2022 Mexico National Olympiad, 6

Find all integers $n\geq 3$ such that there exists a convex $n$-gon $A_1A_2\dots A_n$ which satisfies the following conditions: - All interior angles of the polygon are equal - Not all sides of the polygon are equal - There exists a triangle $T$ and a point $O$ inside the polygon such that the $n$ triangles $OA_1A_2,\ OA_2A_3,\ \dots,\ OA_{n-1}A_n,\ OA_nA_1$ are all similar to $T$, not necessarily in the same vertex order.

2021 AMC 10 Spring, 17

Trapezoid $ABCD$ has $\overline{AB} \parallel \overline{CD}$, $BC = CD = 43$, and $\overline{AD} \perp \overline{BD}$. Let $O$ be the intersection of the diagonals $\overline{AC}$ and $\overline{BD}$, and let $P$ be the midpoint of $\overline{BD}$. GIven that $OP = 11$, the length $AD$ can be written in the form $m\sqrt{n}$, where $m$ and $n$ are positive integers and $n$ is not divisible by the square of any prime. What is $m + n$? $\textbf{(A)}\: 65\qquad\textbf{(B)}\: 132\qquad\textbf{(C)}\: 157\qquad\textbf{(D)}\: 194\qquad\textbf{(E)}\: 215$

2008 ITest, 6

Let $L$ be the length of the altitude to the hypotenuse of a right triangle with legs $5$ and $12$. Find the least integer greater than $L$.

1995 AMC 12/AHSME, 8

In $\triangle ABC$, $\angle C = 90^\circ, AC = 6$ and $BC = 8$. Points $D$ and $E$ are on $\overline{AB}$ and $\overline{BC}$, respectively, and $\angle BED = 90^\circ$. If $DE = 4$, then $BD =$ [asy] size(100); pathpen = linewidth(0.7); pointpen = black+linewidth(3); pair A = (0,0), C = (6,0), B = (6,8), D = (2*A+B)/3, E = (2*C+B)/3; D(D("A",A,SW)--D("B",B,NW)--D("C",C,SE)--cycle); D(D("D",D,NW)--D("E",E,plain.E)); D(rightanglemark(D,E,B,16)); D(rightanglemark(A,C,B,16));[/asy] $\mathbf{(A)}\;5\qquad \mathbf{(B)}\;\frac{16}{3}\qquad \mathbf{(C)}\; \frac{20}{3}\qquad \mathbf{(D)}\; \frac{15}{2}\qquad \mathbf{(E)}\; 8$

2011 Paraguay Mathematical Olympiad, 2

In a triangle $ABC$, let $D$ and $E$ be the midpoints of $AC$ and $BC$ respectively. The distance from the midpoint of $BD$ to the midpoint of $AE$ is $4.5$. What is the length of side $AB$?

2009 USA Team Selection Test, 4

Let $ ABP, BCQ, CAR$ be three non-overlapping triangles erected outside of acute triangle $ ABC$. Let $ M$ be the midpoint of segment $ AP$. Given that $ \angle PAB \equal{} \angle CQB \equal{} 45^\circ$, $ \angle ABP \equal{} \angle QBC \equal{} 75^\circ$, $ \angle RAC \equal{} 105^\circ$, and $ RQ^2 \equal{} 6CM^2$, compute $ AC^2/AR^2$. [i]Zuming Feng.[/i]

2025 Kosovo National Mathematical Olympiad`, P3

Let $g_a$, $g_b$ and $g_c$ be the medians of a triangle $\triangle ABC$ erected from the vertices $A$, $B$ and $C$, respectively. Similarly, let $g_x$, $g_y$ and $g_z$ be the medians of an another triangle $\triangle XYZ$. Show that if $$g_a : g_b : g_c = g_x : g_y : g_z, $$ then the triangles $\triangle ABC$ and $\triangle XYZ$ are similar.

2005 Dutch Mathematical Olympiad, 4

Let $ABCD$ be a quadrilateral with $AB \parallel CD$, $AB > CD$. Prove that the line passing through $AC \cap BD$ and $AD \cap BC$ passes through the midpoints of $AB$ and $CD$.

1992 Canada National Olympiad, 3

In the diagram, $ ABCD$ is a square, with $ U$ and $ V$ interior points of the sides $ AB$ and $ CD$ respectively. Determine all the possible ways of selecting $ U$ and $ V$ so as to maximize the area of the quadrilateral $ PUQV$. [img]http://i250.photobucket.com/albums/gg265/geometry101/CMO1992Number3.jpg[/img]

2023 Bulgaria EGMO TST, 1

Let $ABC$ be a triangle with circumcircle $k$. The tangents at $A$ and $C$ intersect at $T$. The circumcircle of triangle $ABT$ intersects the line $CT$ at $X$ and $Y$ is the midpoint of $CX$. Prove that the lines $AX$ and $BY$ intersect on $k$.

2005 Sharygin Geometry Olympiad, 10.2

A triangle can be cut into three similar triangles. Prove that it can be cut into any number of triangles similar to each other.

2001 Spain Mathematical Olympiad, Problem 2

Let $P$ be a point on the interior of triangle $ABC$, such that the triangle $ABP$ satisfies $AP = BP$. On each of the other sides of $ABC$, build triangles $BQC$ and $CRA$ exteriorly, both similar to triangle $ABP$ satisfying: $$BQ = QC$$ and $$CR = RA.$$ Prove that the point $P,Q,C,$ and $R$ are collinear or are the vertices of a parallelogram.

2023 Brazil National Olympiad, 2

Consider a triangle $ABC$ with $AB < AC$ and let $H$ and $O$ be its orthocenter and circumcenter, respectively. A line starting from $B$ cuts the lines $AO$ and $AH$ at $M$ and $M'$ so that $M'$ is the midpoint of $BM$. Another line starting from $C$ cuts the lines $AH$ and $AO$ at $N$ and $N'$ so that $N'$ is the midpoint of $CN$. Prove that $M, M', N, N'$ are on the same circle.

2002 AMC 12/AHSME, 18

Let $ C_1$ and $ C_2$ be circles defined by \[ (x \minus{} 10)^2 \plus{} y^2 \equal{} 36\]and \[ (x \plus{} 15)^2 \plus{} y^2 \equal{} 81,\]respectively. What is the length of the shortest line segment $ \overline{PQ}$ that is tangent to $ C_1$ at $ P$ and to $ C_2$ at $ Q$? $ \textbf{(A)}\ 15 \qquad \textbf{(B)}\ 18 \qquad \textbf{(C)}\ 20 \qquad \textbf{(D)}\ 21 \qquad \textbf{(E)}\ 24$

2002 Moldova Team Selection Test, 3

A triangle $ABC$ is inscribed in a circle $G$. Points $M$ and $N$ are the midpoints of the arcs $BC$ and $AC$ respectively, and $D$ is an arbitrary point on the arc $AB$ (not containing $C$). Points $I_1$ and $I_2$ are the incenters of the triangles $ADC$ and $BDC$, respectively. If the circumcircle of triangle $DI_1I_2$ meets $G$ again at $P$, prove that triangles $PNI_1$ and $PMI_2$ are similar.

2006 Denmark MO - Mohr Contest, 5

We consider an acute triangle $ABC$. The altitude from $A$ is $AD$, the altitude from $D$ in triangle $ABD$ is $DE,$ and the altitude from $D$ in triangle $ACD$ is $DF$. a) Prove that the triangles $ABC$ and $AF E$ are similar. b) Prove that the segment $EF$ and the corresponding segments constructed from the vertices $B$ and $C$ all have the same length.

2008 Harvard-MIT Mathematics Tournament, 9

Consider a circular cone with vertex $ V$, and let $ ABC$ be a triangle inscribed in the base of the cone, such that $ AB$ is a diameter and $ AC \equal{} BC$. Let $ L$ be a point on $ BV$ such that the volume of the cone is 4 times the volume of the tetrahedron $ ABCL$. Find the value of $ BL/LV$.