This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 844

2007 Germany Team Selection Test, 2

Let $ ABCD$ be a trapezoid with parallel sides $ AB > CD$. Points $ K$ and $ L$ lie on the line segments $ AB$ and $ CD$, respectively, so that $AK/KB=DL/LC$. Suppose that there are points $ P$ and $ Q$ on the line segment $ KL$ satisfying \[\angle{APB} \equal{} \angle{BCD}\qquad\text{and}\qquad \angle{CQD} \equal{} \angle{ABC}.\] Prove that the points $ P$, $ Q$, $ B$ and $ C$ are concyclic. [i]Proposed by Vyacheslev Yasinskiy, Ukraine[/i]

1964 AMC 12/AHSME, 17

Given the distinct points $P(x_1, y_1)$, $Q(x_2, y_2)$ and $R(x_1+x_2, y_1+y_2)$. Line segments are drawn connecting these points to each other and to the origin $0$. Of the three possibilities: (1) parallelogram (2) straight line (3) trapezoid, figure $OPRQ$, depending upon the location of the points $P, Q,$ and $R$, can be: $ \textbf{(A)}\ \text{(1) only}\qquad\textbf{(B)}\ \text{(2) only}\qquad\textbf{(C)}\ \text{(3) only}\qquad\textbf{(D)}\ \text{(1) or (2) only}\qquad\textbf{(E)}\ \text{all three} $

2012 Swedish Mathematical Competition, 6

A circle is inscribed in an trapezoid. Show that the diagonals of the trapezoid intersect at a point on the diameter of the circle perpendicular to the two parallel sides.

2011 AMC 8, 20

Quadrilateral $ABCD$ is a trapezoid, $AD = 15$, $AB = 50$, $BC = 20$, and the altitude is $12$. What is the area of the trapezoid? [asy] pair A,B,C,D; A=(3,20); B=(35,20); C=(47,0); D=(0,0); draw(A--B--C--D--cycle); dot((0,0)); dot((3,20)); dot((35,20)); dot((47,0)); label("A",A,N); label("B",B,N); label("C",C,S); label("D",D,S); draw((19,20)--(19,0)); dot((19,20)); dot((19,0)); draw((19,3)--(22,3)--(22,0)); label("12",(21,10),E); label("50",(19,22),N); label("15",(1,10),W); label("20",(41,12),E);[/asy] $ \textbf{(A)}600\qquad\textbf{(B)}650\qquad\textbf{(C)}700\qquad\textbf{(D)}750\qquad\textbf{(E)}800 $

JBMO Geometry Collection, 2016

A trapezoid $ABCD$ ($AB || CF$,$AB > CD$) is circumscribed.The incircle of the triangle $ABC$ touches the lines $AB$ and $AC$ at the points $M$ and $N$,respectively.Prove that the incenter of the trapezoid $ABCD$ lies on the line $MN$.

2000 Czech and Slovak Match, 5

Let $ABCD$ be an isosceles trapezoid with bases $AB$ and $CD$. The incircle of the triangle $BCD$ touches $CD$ at $E$. Point $F$ is chosen on the bisector of the angle $DAC$ such that the lines $EF$ and $CD$ are perpendicular. The circumcircle of the triangle $ACF$ intersects the line $CD$ again at $G$. Prove that the triangle $AFG$ is isosceles.

1998 Romania National Olympiad, 3

In the right-angled trapezoid $AB CD$, $AB \parallel CD$, $m( \angle A) = 90°$, $AD = DC = a$ and $AB =2a$. On the perpendiculars raised in $C$ and $D$ on the plane containing the trapezoid one considers points $E$ and $F$ (on the same side of the plane) such that $CE = 2a$ and $DF = a$. Find the distance from the point $B$ to the plane $(AEF)$ and the measure of the angle between the lines $AF$ and $BE$.

2007 Princeton University Math Competition, 6

Take the square with vertices $(0,0)$, $(1,0)$, $(0,1)$, and $(1,1)$. Choose a random point in this square and draw the line segment from it to $(0,0)$. Choose a second random point in this square and draw the line segment from it to $(1,0)$. What is the probability that the two line segments intersect?

1978 Czech and Slovak Olympiad III A, 5

Let $ABCS$ be an isosceles trapezoid. Denote $A',B',C',D'$ the incenters of triangles $BCD,CDA,$ $DAB,ABC,$ respectively. Show that $A',B',C',D'$ are vertices of a rectangle.

2024 Harvard-MIT Mathematics Tournament, 5

Let $ABCD$ be a convex trapezoid such that $\angle{DAB}=\angle{ABC}=90^{\circ},DA=2,AB=3,$ and $BC=8$. Let $\omega$ be a circle passing through $A$ and tangent to segment $CD$ at point $T$. Suppose that the center of $\omega$ lies on line $BC$. Compute $CT$.

2012 Greece Team Selection Test, 4

Let $n=3k$ be a positive integer (with $k\geq 2$). An equilateral triangle is divided in $n^2$ unit equilateral triangles with sides parallel to the initial, forming a grid. We will call "trapezoid" the trapezoid which is formed by three equilateral triangles (one base is equal to one and the other is equal to two). We colour the points of the grid with three colours (red, blue and green) such that each two neighboring points have different colour. Finally, the colour of a "trapezoid" will be the colour of the midpoint of its big base. Find the number of all "trapezoids" in the grid (not necessarily disjoint) and determine the number of red, blue and green "trapezoids".

1988 Tournament Of Towns, (179) 1

Determine the ratio of the bases (parallel sides) of the trapezoid for which there exists a line with $6$ points of intersection with the diagonals, lateral sides and extended bases cut $5$ equal segments? ( E . G . Gotman)

2009 Purple Comet Problems, 14

Let $ABCD$ be a trapezoid with $AB$ parallel to $CD, AB$ has length $1,$ and $CD$ has length $41.$ Let points $X$ and $Y$ lie on sides $AD$ and $BC,$ respectively, such that $XY$ is parallel to $AB$ and $CD,$ and $XY$ has length $31.$ Let $m$ and $n$ be two relatively prime positive integers such that the ratio of the area of $ABYX$ to the area of $CDXY$ is $\tfrac{m}{n}.$ Find $m+2n.$

2002 Paraguay Mathematical Olympiad, 5

In a trapezoid $ABCD$, the side $DA$ is perpendicular to the bases $AB$ and $CD$. Also $AB=45$, $CD =20$, $BC =65$. Let $P$ be a point on the side $BC$ such that $BP=45$ and let $M$ be the midpoint of $DA$. Calculate the length of $PM$ .

2023 All-Russian Olympiad, 7

Given a trapezoid $ABCD$, in which $AD \parallel BC$, and rays $AB$ and $DC$ intersect at point $G$. The common external tangents to the circles $(ABC), (ACD)$ intersect at point $E$. The common external tangents to circles $(ABD), (CBD)$ meet at $F$. Prove that the points $E, F$ and $G$ are collinear.

2010 Bulgaria National Olympiad, 3

Let $k$ be the circumference of the triangle $ABC.$ The point $D$ is an arbitrary point on the segment $AB.$ Let $I$ and $J$ be the centers of the circles which are tangent to the side $AB,$ the segment $CD$ and the circle $k.$ We know that the points $A, B, I$ and $J$ are concyclic. The excircle of the triangle $ABC$ is tangent to the side $AB$ in the point $M.$ Prove that $M \equiv D.$

2016 Peru MO (ONEM), 1

Let $ABCD$ be a trapezoid of parallel bases $ BC$ and $AD$. If $\angle CAD = 2\angle CAB, BC = CD$ and $AC = AD$, determine all the possible values of the measure of the angle $\angle CAB$.

May Olympiad L2 - geometry, 2001.2

On the trapezoid $ABCD$ , side $DA$ is perpendicular to the bases $AB$ and $CD$ . The base $AB$ measures $45$, the base $CD$ measures $20$ and the $BC$ side measures $65$. Let $P$ on the $BC$ side such that $BP$ measures $45$ and $M$ is the midpoint of $DA$. Calculate the measure of the $PM$ segment.

2006 Junior Balkan Team Selection Tests - Romania, 2

In a plane $5$ points are given such that all triangles having vertices at these points are of area not greater than $1$. Show that there exists a trapezoid which contains all point in the interior (or on the sides) and having the area not exceeding $3$.

1982 IMO Longlists, 13

A regular $n$-gonal truncated pyramid is circumscribed around a sphere. Denote the areas of the base and the lateral surfaces of the pyramid by $S_1, S_2$, and $S$, respectively. Let $\sigma$ be the area of the polygon whose vertices are the tangential points of the sphere and the lateral faces of the pyramid. Prove that \[\sigma S = 4S_1S_2 \cos^2 \frac{\pi}{n}.\]

2010 APMO, 4

Let $ABC$ be an acute angled triangle satisfying the conditions $AB>BC$ and $AC>BC$. Denote by $O$ and $H$ the circumcentre and orthocentre, respectively, of the triangle $ABC.$ Suppose that the circumcircle of the triangle $AHC$ intersects the line $AB$ at $M$ different from $A$, and the circumcircle of the triangle $AHB$ intersects the line $AC$ at $N$ different from $A.$ Prove that the circumcentre of the triangle $MNH$ lies on the line $OH$.

2014 India Regional Mathematical Olympiad, 1

In acute $\triangle ABC,$ let $D$ be the foot of perpendicular from $A$ on $BC$. Consider points $K, L, M$ on segment $AD$ such that $AK= KL= LM= MD$. Suppose the sum of the areas of the shaded region equals the sum of the areas of the unshaded regions in the following picture. Prove that $BD= DC$. [img]http://s27.postimg.org/a0d0plr4z/Untitled.png[/img]

1989 Putnam, B5

Label the vertices of a trapezoid $T$ inscribed in the unit circle as $A,B,C,D$ counterclockwise with $AB\parallel CD$. Let $s_1,s_2,$ and $d$ denote the lengths of $AB$, $CD$, and $OE$, where $E$ is the intersection of the diagonals of $T$, and $O$ is the center of the circle. Determine the least upper bound of $\frac{s_1-s_2}d$ over all $T$ for which $d\ne0$, and describe all cases, if any, in which equality is attained.

2013 Sharygin Geometry Olympiad, 14

Let $M$, $N$ be the midpoints of diagonals $AC$, $BD$ of a right-angled trapezoid $ABCD$ ($\measuredangle A=\measuredangle D = 90^\circ$). The circumcircles of triangles $ABN$, $CDM$ meet the line $BC$ in the points $Q$, $R$. Prove that the distances from $Q$, $R$ to the midpoint of $MN$ are equal.

1987 Czech and Slovak Olympiad III A, 1

Given a trapezoid, divide it by a line into two quadrilaterals in such a way that both of them are cyclic with the same circumradius. Discuss conditions of solvability.