This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

2010 Germany Team Selection Test, 3

Let $ABCD$ be a circumscribed quadrilateral. Let $g$ be a line through $A$ which meets the segment $BC$ in $M$ and the line $CD$ in $N$. Denote by $I_1$, $I_2$ and $I_3$ the incenters of $\triangle ABM$, $\triangle MNC$ and $\triangle NDA$, respectively. Prove that the orthocenter of $\triangle I_1I_2I_3$ lies on $g$. [i]Proposed by Nikolay Beluhov, Bulgaria[/i]

Kettering MO, 2005

Today was the 5th Kettering Olympiad - and here are the problems, which are very good intermediate problems. 1. Find all real $x$ so that $(1+x^2)(1+x^4)=4x^3$ 2. Mark and John play a game. They have $100$ pebbles on a table. They take turns taking at least one at at most eight pebbles away. The person to claim the last pebble wins. Mark goes first. Can you find a way for Mark to always win? What about John? 3. Prove that $\sin x + \sin 3x + \sin 5x + ... + \sin 11 x = (1-\cos 12 x)/(2 \sin x)$ 4. Mark has $7$ pieces of paper. He takes some of them and splits each into $7$ pieces of paper. He repeats this process some number of times. He then tells John he has $2000$ pieces of paper. John tells him he is wrong. Why is John right? 5. In a triangle $ABC$, the altitude, angle bisector, and median split angle $A$ into four equal angles. Find the angles of $ABC.$ 6. There are $100$ cities. There exist airlines connecting pairs of cities. a) Find the minimal number of airlines such that with at most $k$ plane changes, one can go from any city to any other city. b) Given that there are $4852$ airlines, show that, given any schematic, one can go from any city to any other city.

1970 IMO Longlists, 43

Prove that the equation \[x^3 - 3 \tan\frac{\pi}{12} x^2 - 3x + \tan\frac{\pi}{12}= 0\] has one root $x_1 = \tan \frac{\pi}{36}$, and find the other roots.

2011 Math Prize For Girls Problems, 7

If $z$ is a complex number such that \[ z + z^{-1} = \sqrt{3}, \] what is the value of \[ z^{2010} + z^{-2010} \, ? \]

2008 India Regional Mathematical Olympiad, 1

On a semicircle with diameter $AB$ and centre $S$, points $C$ and $D$ are given such that point $C$ belongs to arc $AD$. Suppose $\angle CSD = 120^\circ$. Let $E$ be the point of intersection of the straight lines $AC$ and $BD$ and $F$ the point of intersection of the straight lines $AD$ and $BC$. Prove that $EF=\sqrt{3}AB$.

1996 Romania National Olympiad, 3

Prove that $ \forall x\in \mathbb{R} $ , $ \cos ^7x+\cos ^7(x+\frac {2\pi}{3})+\cos ^7(x+\frac {4\pi}{3})=\frac {63}{64}\cos 3x $

2001 Flanders Math Olympiad, 3

In a circle we enscribe a regular $2001$-gon and inside it a regular $667$-gon with shared vertices. Prove that the surface in the $2001$-gon but not in the $667$-gon is of the form $k.sin^3\left(\frac{\pi}{2001}\right).cos^3\left(\frac{\pi}{2001}\right)$ with $k$ a positive integer. Find $k$.

1979 IMO Longlists, 20

Show that for any vectors $a, b$ in Euclidean space, \[|a \times b|^3 \leq \frac{3 \sqrt 3}{8} |a|^2 |b|^2 |a-b|^2\] Remark. Here $\times$ denotes the vector product.

2006 MOP Homework, 5

Tags: trigonometry
Let x, y be reals satisfying: sin x+cos y=1 sin y+cos x=-1 Prove cos 2x=cos 2y

JBMO Geometry Collection, 2011

Let $ABCD$ be a convex quadrilateral and points $E$ and $F$ on sides $AB,CD$ such that \[\tfrac{AB}{AE}=\tfrac{CD}{DF}=n\] If $S$ is the area of $AEFD$ show that ${S\leq\frac{AB\cdot CD+n(n-1)AD^2+n^2DA\cdot BC}{2n^2}}$

1982 AMC 12/AHSME, 18

In the adjoining figure of a rectangular solid, $\angle DHG=45^\circ$ and $\angle FHB=60^\circ$. Find the cosine of $\angle BHD$. [asy] size(200); import three;defaultpen(linewidth(0.7)+fontsize(10)); currentprojection=orthographic(1/3+1/10,1-1/10,1/3); real r=sqrt(3); triple A=(0,0,r), B=(0,r,r), C=(1,r,r), D=(1,0,r), E=O, F=(0,r,0), G=(1,0,0), H=(1,r,0); draw(D--G--H--D--A--B--C--D--B--F--H--B^^C--H); draw(A--E^^G--E^^F--E, linetype("4 4")); label("$A$", A, N); label("$B$", B, dir(0)); label("$C$", C, N); label("$D$", D, W); label("$E$", E, NW); label("$F$", F, S); label("$G$", G, W); label("$H$", H, S); triple H45=(1,r-0.15,0.1), H60=(1-0.05, r, 0.07); label("$45^\circ$", H45, dir(125), fontsize(8)); label("$60^\circ$", H60, dir(25), fontsize(8));[/asy] $\textbf {(A) } \frac{\sqrt{3}}{6} \qquad \textbf {(B) } \frac{\sqrt{2}}{6} \qquad \textbf {(C) } \frac{\sqrt{6}}{3} \qquad \textbf {(D) } \frac{\sqrt{6}}{4} \qquad \textbf {(E) } \frac{\sqrt{6}-\sqrt{2}}{4}$

2006 Moldova National Olympiad, 11.1

Let $n\in\mathbb{N}^*$. Prove that \[ \lim_{x\to 0}\frac{ \displaystyle (1+x^2)^{n+1}-\prod_{k=1}^n\cos kx}{ \displaystyle x\sum_{k=1}^n\sin kx}=\frac{2n^2+n+12}{6n}. \]

2007 Moldova National Olympiad, 12.6

Show that the distance between a point on the hyperbola $xy=5$ and a point on the ellipse $x^{2}+6y^{2}=6$ is at least $\frac{9}{7}$.

2006 AIME Problems, 12

Equilateral $\triangle ABC$ is inscribed in a circle of radius 2. Extend $\overline{AB}$ through $B$ to point $D$ so that $AD=13$, and extend $\overline{AC}$ through $C$ to point $E$ so that $AE=11$. Through $D$, draw a line $l_1$ parallel to $\overline{AE}$, and through $E$, draw a line ${l}_2$ parallel to $\overline{AD}$. Let $F$ be the intersection of ${l}_1$ and ${l}_2$. Let $G$ be the point on the circle that is collinear with $A$ and $F$ and distinct from $A$. Given that the area of $\triangle CBG$ can be expressed in the form $\frac{p\sqrt{q}}{r}$, where $p$, $q$, and $r$ are positive integers, $p$ and $r$ are relatively prime, and $q$ is not divisible by the square of any prime, find $p+q+r$.

1995 Canada National Olympiad, 5

$u$ is a real parameter such that $0<u<1$. For $0\le x \le u$, $f(x)=0$. For $u\le x \le n$, $f(x)=1-\left(\sqrt{ux}+\sqrt{(1-u)(1-x)}\right)^2$. The sequence $\{u_n\}$ is define recursively as follows: $u_1=f(1)$ and $u_n=f(u_{n-1})$ $\forall n\in \mathbb{N}, n\neq 1$. Show that there exists a positive integer $k$ for which $u_k=0$.

2003 Balkan MO, 2

Let $ABC$ be a triangle, and let the tangent to the circumcircle of the triangle $ABC$ at $A$ meet the line $BC$ at $D$. The perpendicular to $BC$ at $B$ meets the perpendicular bisector of $AB$ at $E$. The perpendicular to $BC$ at $C$ meets the perpendicular bisector of $AC$ at $F$. Prove that the points $D$, $E$ and $F$ are collinear. [i]Valentin Vornicu[/i]

2004 Harvard-MIT Mathematics Tournament, 5

There exists a positive real number $x$ such that $ \cos (\arctan (x)) = x $. Find the value of $x^2$.

2006 Kazakhstan National Olympiad, 5

Prove that for every $ x $ such that $ \sin x \neq 0 $, exists natural $ n $ such that $ | \sin nx | \geq \frac {\sqrt {3}} {2} $.

2008 Princeton University Math Competition, A10

A cuboctahedron is the convex hull of (smallest convex set containing) the $12$ points $(\pm 1, \pm 1, 0), (\pm 1, 0, \pm 1), (0, \pm 1, \pm 1)$. Find the cosine of the solid angle of one of the triangular faces, as viewed from the origin. (Take a figure and consider the set of points on the unit sphere centered on the origin such that the ray from the origin through the point intersects the fi gure. The area of that set is the solid angle of the fi gure as viewed from the origin.)

2013 Princeton University Math Competition, 15

Prove: \[|\sin a_1|+|\sin a_2|+|\sin a_3|+\ldots+|\sin a_n|+|\cos(a_1+a_2+a_3+\ldots+a_n)|\geq 1.\]

2013 India IMO Training Camp, 2

In a triangle $ABC$, with $\widehat{A} > 90^\circ$, let $O$ and $H$ denote its circumcenter and orthocenter, respectively. Let $K$ be the reflection of $H$ with respect to $A$. Prove that $K, O$ and $C$ are collinear if and only if $\widehat{A} - \widehat{B} = 90^\circ$.

2015 India National Olympiad, 3

Find all real functions $f: \mathbb{R} \to \mathbb{R}$ such that $f(x^2+yf(x))=xf(x+y)$.

2014 National Olympiad First Round, 21

Let $ABCD$ be a trapezoid such that side $[AB]$ and side $[CD]$ are perpendicular to side $[BC]$. Let $E$ be a point on side $[BC]$ such that $\triangle AED$ is equilateral. If $|AB|=7$ and $|CD|=5$, what is the area of trapezoid $ABCD$? $ \textbf{(A)}\ 27\sqrt{3} \qquad\textbf{(B)}\ 42 \qquad\textbf{(C)}\ 24\sqrt{3} \qquad\textbf{(D)}\ 40 \qquad\textbf{(E)}\ 36 $

1998 National Olympiad First Round, 5

Tags: trigonometry
$ ABCD$ is a cyclic quadrilateral. If $ \angle B \equal{} \angle D$, $ AC\bigcap BD \equal{} \left\{E\right\}$, $ \angle BCD \equal{} 150{}^\circ$, $ \left|BE\right| \equal{} x$, $ \left|AC\right| \equal{} z$, then find $ \left|ED\right|$ in terms of $ x$ and $ z$. $\textbf{(A)}\ \frac {z \minus{} x}{\sqrt {3} } \qquad\textbf{(B)}\ \frac {z \minus{} 2x}{3} \qquad\textbf{(C)}\ \frac {z \plus{} x}{\sqrt {3} } \qquad\textbf{(D)}\ \frac {z \minus{} 2x}{2} \qquad\textbf{(E)}\ \frac {2z \minus{} 3x}{2}$

2003 Brazil National Olympiad, 3

$ABCD$ is a rhombus. Take points $E$, $F$, $G$, $H$ on sides $AB$, $BC$, $CD$, $DA$ respectively so that $EF$ and $GH$ are tangent to the incircle of $ABCD$. Show that $EH$ and $FG$ are parallel.