This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 698

2010 Moldova National Olympiad, 12.4

The perimeter of a triangle is a natural number, its circumradius is equal to $\frac{65}{8}$, and the inradius is equal to $4$. Find the sides of the triangle.

2017 BMT Spring, 2

Barack is an equilateral triangle and Michelle is a square. If Barack and Michelle each have perimeter $ 12$, find the area of the polygon with larger area.

2010 Saudi Arabia BMO TST, 2

Let $ABC$ be an acute triangle and let $MNPQ$ be a square inscribed in the triangle such that $M ,N \in BC$, $P \in AC$, $Q \in AB$. Prove that $area \, [MNPQ] \le \frac12 area\, [ABC]$.

1995 Mexico National Olympiad, 5

Tags: area , geometry , pentagon
$ABCDE$ is a convex pentagon such that the triangles $ABC, BCD, CDE, DEA$ and $EAB$ have equal areas. Show that $(1/4)$ area $(ABCDE) <$ area $(ABC) < (1/3)$ area $(ABCDE)$.

2011 Sharygin Geometry Olympiad, 15

Given a circle with center $O$ and radius equal to $1$. $AB$ and $AC$ are the tangents to this circle from point $A$. Point $M$ on the circle is such that the areas of quadrilaterals $OBMC$ and $ABMC$ are equal. Find $MA$.

Kyiv City MO 1984-93 - geometry, 1989.9.1

Tags: area , incircle , geometry
The perimeter of the triangle $ABC$ is equal to $2p$, the length of the side$ AC$ is equal to $b$, the angle $ABC$ is equal to $\beta$. A circle with center at point $O$, inscribed in this triangle, touches the side $BC$ at point $K$. Calculate the area of ​​the triangle $BOK$.

2007 Sharygin Geometry Olympiad, 19

Into an angle $A$ of size $a$, a circle is inscribed tangent to its sides at points $B$ and $C$. A line tangent to this circle at a point M meets the segments $AB$ and $AC$ at points $P$ and $Q$ respectively. What is the minimum $a$ such that the inequality $S_{PAQ}<S_{BMC}$ is possible?

2022 Durer Math Competition Finals, 11

Tags: geometry , rectangle , area
In rectangle $ABCD$, diagonal $AC$ is met by the angle bisector from $B$ at $B'$ and the angle bisector from $D$ at $D'$. Diagonal $BD$ is met by the angle bisector from $A$ at $A'$ and the angle bisector from $C$ at $C'$. The area of quadrilateral $A'B'C'D'$ is $\frac{9}{16}$ the area of rectangle $ABCD$. What is the ratio of the longer side and shorter side of rectangle $ABCD$?

1975 All Soviet Union Mathematical Olympiad, 209

Denote the midpoints of the convex hexagon $A_1A_2A_3A_4A_5A_6$ diagonals $A_6A_2$, $A_1A_3$, $A_2A_4$, $A_3A_5$, $A_4A_6$, $A_5A_1$ as $B_1, B_2, B_3, B_4, B_5, B_6$ respectively. Prove that if the hexagon $B_1B_2B_3B_4B_5B_6$ is convex, than its area equals to the quarter of the initial hexagon.

1980 IMO Shortlist, 8

Three points $A,B,C$ are such that $B \in ]AC[$. On the side of $AC$ we draw the three semicircles with diameters $[AB], [BC]$ and $[AC]$. The common interior tangent at $B$ to the first two semi-circles meets the third circle in $E$. Let $U$ and $V$ be the points of contact of the common exterior tangent to the first two semi-circles. Denote the area of the triangle $ABC$ as $S(ABC)$. Evaluate the ratio $R=\frac{S(EUV)}{S(EAC)}$ as a function of $r_1 = \frac{AB}{2}$ and $r_2 = \frac{BC}{2}$.

2021 OMpD, 1

Tags: area , geometry , hexagon
Let $ABCDEF$ be a regular hexagon with sides $1m$ and $O$ as its center. Suppose that $OPQRST$ is a regular hexagon, so that segments $OP$ and $AB$ intersect at $X$ and segments $OT$ and $CD$ intersect at $Y$, as shown in the figure below. Determine the area of the pentagon $OXBCY$.

1999 Austrian-Polish Competition, 4

Three lines $k, l, m$ are drawn through a point $P$ inside a triangle $ABC$ such that $k$ meets $AB$ at $A_1$ and $AC$ at $A_2 \ne A_1$ and $PA_1 = PA_2$, $l $ meets $BC$ at $B_1$ and $BA$ at $B_2 \ne B_1$ and $PB_1 = PB_2$, $m$ meets $CA$ at $C_1$ and $CB$ at $C_2\ne C_1$ and $PC_1=PC_2$. Prove that the lines $k,l,m$ are uniquely determined by these conditions. Find point $P$ for which the triangles $AA_1A_2, BB_1B_2, CC_1C_2$ have the same area and show that this point is unique.

May Olympiad L1 - geometry, 2017.3

Tags: rhombus , area , geometry
Let $ABCD$ be a rhombus of sides $AB = BC = CD= DA = 13$. On the side $AB$ construct the rhombus $BAFE$ outside $ABCD$ and such that the side $AF$ is parallel to the diagonal $BD$ of $ABCD$. If the area of $BAFE$ is equal to $65$, calculate the area of $ABCD$.

2020-21 IOQM India, 1

Tags: trapezoid , area , geometry
Let $ABCD$ be a trapezium in which $AB \parallel CD$ and $AB = 3CD$. Let $E$ be then midpoint of the diagonal $BD$. If $[ABCD] = n \times [CDE]$, what is the value of $n$? (Here $[t]$ denotes the area of the geometrical figure$ t$.)

1956 Moscow Mathematical Olympiad, 340

a) * In a rectangle of area $5$ sq. units, $9$ rectangles of area $1$ are arranged. Prove that the area of the overlap of some two of these rectangles is $\ge 1/9$ b) In a rectangle of area $5$ sq. units, lie $9$ arbitrary polygons each of area $1$. Prove that the area of the overlap of some two of these rectangles is $\ge 1/9$

2020 Estonia Team Selection Test, 2

The radius of the circumcircle of triangle $\Delta$ is $R$ and the radius of the inscribed circle is $r$. Prove that a circle of radius $R + r$ has an area more than $5$ times the area of triangle $\Delta$.

Denmark (Mohr) - geometry, 2004.1

The width of rectangle $ABCD$ is twice its height, and the height of rectangle $EFCG$ is twice its width. The point $E$ lies on the diagonal $BD$. Which fraction of the area of the big rectangle is that of the small one? [img]https://1.bp.blogspot.com/-aeqefhbBh5E/XzcBjhgg7sI/AAAAAAAAMXM/B0qSgWDBuqc3ysd-mOitP1LarOtBdJJ3gCLcBGAsYHQ/s0/2004%2BMohr%2Bp1.png[/img]

2014 Estonia Team Selection Test, 3

Three line segments, all of length $1$, form a connected figure in the plane. Any two different line segments can intersect only at their endpoints. Find the maximum area of the convex hull of the figure.

1985 Bulgaria National Olympiad, Problem 3

A pyramid $MABCD$ with the top-vertex $M$ is circumscribed about a sphere with center $O$ so that $O$ lies on the altitude of the pyramid. Each of the planes $ACM,BDM,ABO$ divides the lateral surface of the pyramid into two parts of equal areas. The areas of the sections of the planes $ACM$ and $ABO$ inside the pyramid are in ratio $(\sqrt2+2):4$. Determine the angle $\delta$ between the planes $ACM$ and $ABO$, and the dihedral angle of the pyramid at the edge $AB$.

2003 Dutch Mathematical Olympiad, 1

A Pythagorean triangle is a right triangle whose three sides are integers. The best known example is the triangle with rectangular sides $3$ and $4$ and hypotenuse $5$. Determine all Pythagorean triangles whose area is twice the perimeter.

2005 Federal Math Competition of S&M, Problem 4

Tags: circles , area , geometry
Inside a circle $k$ of radius $R$ some round spots are made. The area of each spot is $1$. Every radius of circle $k$, as well as every circle concentric with $k$, meets in no more than one spot. Prove that the total area of all the spots is less than $$\pi\sqrt R+\frac12R\sqrt R.$$

2022 Novosibirsk Oral Olympiad in Geometry, 5

Tags: area , geometry , isosceles
Two isosceles triangles of the same area are located as shown in the figure. Find the angle $x$. [img]https://cdn.artofproblemsolving.com/attachments/a/6/f7dbfd267274781b67a5f3d5a9036fb2905156.png[/img]

LMT Team Rounds 2010-20, 2017 MaxArea

The goal of this problem is to show that the maximum area of a polygon with a fixed number of sides and a fixed perimeter is achieved by a regular polygon. (a) Prove that the polygon with maximum area must be convex. (Hint: If any angle is concave, show that the polygon’s area can be increased.) (b) Prove that if two adjacent sides have different lengths, the area of the polygon can be increased without changing the perimeter. (c) Prove that the polygon with maximum area is equilateral, that is, has all the same side lengths. It is true that when given all four side lengths in order of a quadrilateral, the maximum area is achieved in the unique configuration in which the quadrilateral is cyclic, that is, it can be inscribed in a circle. (d) Prove that in an equilateral polygon, if any two adjacent angles are different then the area of the polygon can be increased without changing the perimeter. (e) Prove that the polygon of maximum area must be equiangular, or have all angles equal. (f ) Prove that the polygon of maximum area is a regular polygon. PS. You had better use hide for answers.

2001 Cuba MO, 9

Tags: area , geometry
In triangle $ABC$, right at $C$, let $F$ be the intersection point of the altitude $CD$ with the angle bisector $AE$ and $G$ be the intersection point of $ED$ with $BF$. Prove that the area of the quadrilateral $CEGF$ is equal to the area of the triangle $BDG$ .

2022 Yasinsky Geometry Olympiad, 1

From the triangle $ABC$, are gicen only the incenter $I$, the touchpoint $K$ of the inscribed circle with the side $AB$, as well as the center $I_a$ of the exscribed circle, that touches the side $BC$ . Construct a triangle equal in size to triangle $ABC$. (Gryhoriy Filippovskyi)