This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 241

2007 Korea Junior Math Olympiad, 7

Let the incircle of $\triangle ABC$ meet $BC,CA,AB$ at $J,K,L$. Let $D(\ne B, J),E(\ne C,K), F(\ne A,L)$ be points on $BJ,CK,AL$. If the incenter of $\triangle ABC$ is the circumcenter of $\triangle DEF$ and $\angle BAC = \angle DEF$, prove that $\triangle ABC$ and $\triangle DEF$ are isosceles triangles.

2021 Sharygin Geometry Olympiad, 8.6

Let $ABC$ be an acute-angled triangle. Point $P$ is such that $AP = AB$ and $PB\parallel AC$. Point $Q$ is such that $AQ = AC$ and $CQ\parallel AB$. Segments $CP$ and $BQ$ meet at point $X$. Prove that the circumcenter of triangle $ABC$ lies on the circle $(PXQ)$.

2003 Estonia Team Selection Test, 6

Let $ABC$ be an acute-angled triangle, $O$ its circumcenter and $H$ its orthocenter. The orthogonal projection of the vertex $A$ to the line $BC$ lies on the perpendicular bisector of the segment $AC$. Compute $\frac{CH}{BO}$ . (J. Willemson)

2009 Balkan MO Shortlist, G3

Let $ABCD$ be a convex quadrilateral, and $P$ be a point in its interior. The projections of $P$ on the sides of the quadrilateral lie on a circle with center $O$. Show that $O$ lies on the line through the midpoints of $AC$ and $BD$.

Brazil L2 Finals (OBM) - geometry, 2010.2

Let $ABCD$ be a parallelogram and $\omega$ be the circumcircle of the triangle $ABD$. Let $E ,F$ be the intersections of $\omega$ with lines $BC ,CD$ respectively . Prove that the circumcenter of the triangle $CEF$ lies on $\omega$.

2008 Greece JBMO TST, 1

Given a point $A$ that lies on circle $c(o,R)$ (with center $O$ and radius $R$). Let $(e)$ be the tangent of the circle $c$ at point $A$ and a line $(d)$ that passes through point $O$ and intersects $(e)$ at point $M$ and the circle at points $B,C$ (let $B$ lie between $O$ and $A$). If $AM = R\sqrt3$ , prove that a) triangle $AMC$ is isosceles. b) circumcenter of triangle $AMC$ lies on circle $c$ .

Estonia Open Senior - geometry, 2010.1.4

Circle $c$ passes through vertices $A$ and $B$ of an isosceles triangle $ABC$, whereby line $AC$ is tangent to it. Prove that circle $c$ passes through the circumcenter or the incenter or the orthocenter of triangle $ABC$.

2010 Balkan MO Shortlist, G4

Let $ABC$ be a given triangle and $\ell$ be a line that meets the lines $BC, CA$ and $AB$ in $A_1,B_1$ and $C_1$ respectively. Let $A'$ be the midpoint, of the segment connecting the projections of $A_1$ onto the lines $AB$ and $AC$. Construct, analogously the points $B'$ and $C'$. (a) Show that the points $A', B'$ and $C'$ are collinear on some line $\ell'$. (b) Show that if $\ell$ contains the circumcenter of the triangle $ABC$, then $\ell' $ contains the center of it's Euler circle.

2014 Oral Moscow Geometry Olympiad, 1

In triangle $ABC, \angle A= 45^o, BH$ is the altitude, the point $K$ lies on the $AC$ side, and $BC = CK$. Prove that the center of the circumscribed circle of triangle $ABK$ coincides with the center of an excircle of triangle $BCH$.

Kyiv City MO Seniors 2003+ geometry, 2022.11.3

Let $H$ and $O$ be the orthocenter and the circumcenter of the triangle $ABC$. Line $OH$ intersects the sides $AB, AC$ at points $X, Y$ correspondingly, so that $H$ belongs to the segment $OX$. It turned out that $XH = HO = OY$. Find $\angle BAC$. [i](Proposed by Oleksii Masalitin)[/i]

2006 Estonia Team Selection Test, 2

The center of the circumcircle of the acute triangle $ABC$ is $O$. The line $AO$ intersects $BC$ at $D$. On the sides $AB$ and $AC$ of the triangle, choose points $E$ and $F$, respectively, so that the points $A, E, D, F$ lie on the same circle. Let $E'$ and $F'$ projections of points $E$ and $F$ on side $BC$ respectively. Prove that length of the segment $E'F'$ does not depend on the position of points $E$ and $F$.

2015 IMO Shortlist, G2

Triangle $ABC$ has circumcircle $\Omega$ and circumcenter $O$. A circle $\Gamma$ with center $A$ intersects the segment $BC$ at points $D$ and $E$, such that $B$, $D$, $E$, and $C$ are all different and lie on line $BC$ in this order. Let $F$ and $G$ be the points of intersection of $\Gamma$ and $\Omega$, such that $A$, $F$, $B$, $C$, and $G$ lie on $\Omega$ in this order. Let $K$ be the second point of intersection of the circumcircle of triangle $BDF$ and the segment $AB$. Let $L$ be the second point of intersection of the circumcircle of triangle $CGE$ and the segment $CA$. Suppose that the lines $FK$ and $GL$ are different and intersect at the point $X$. Prove that $X$ lies on the line $AO$. [i]Proposed by Greece[/i]

2003 Estonia Team Selection Test, 6

Let $ABC$ be an acute-angled triangle, $O$ its circumcenter and $H$ its orthocenter. The orthogonal projection of the vertex $A$ to the line $BC$ lies on the perpendicular bisector of the segment $AC$. Compute $\frac{CH}{BO}$ . (J. Willemson)

2002 IMO Shortlist, 4

Circles $S_1$ and $S_2$ intersect at points $P$ and $Q$. Distinct points $A_1$ and $B_1$ (not at $P$ or $Q$) are selected on $S_1$. The lines $A_1P$ and $B_1P$ meet $S_2$ again at $A_2$ and $B_2$ respectively, and the lines $A_1B_1$ and $A_2B_2$ meet at $C$. Prove that, as $A_1$ and $B_1$ vary, the circumcentres of triangles $A_1A_2C$ all lie on one fixed circle.

2023 Brazil EGMO Team Selection Test, 3

Let $\Delta ABC$ be a triangle and $L$ be the foot of the bisector of $\angle A$. Let $O_1$ and $O_2$ be the circumcenters of $\triangle ABL$ and $\triangle ACL$ respectively and let $B_1$ and $C_1$ be the projections of $C$ and $B$ through the bisectors of the angles $\angle B$ and $\angle C$ respectively. The incircle of $\Delta ABC$ touches $AC$ and $AB$ at points $B_0$ and $C_0$ respectively and the bisectors of angles $\angle B$ and $\angle C$ meet the perpendicular bisector of $AL$ at points $Q$ and $P$ respectively. Prove that the five lines $PC_0, QB_0, O_1C_1, O_2B_1$ and $BC$ are all concurrent.

2019 Saudi Arabia Pre-TST + Training Tests, 4.3

Let $ABC$ be a triangle, let $D$ be the touch point of the side $BC$ and the incircle of the triangle $ABC$, and let $J_b$ and $J_c$ be the incentres of the triangles $ABD$ and $ACD$, respectively. Prove that the circumcentre of the triangle $AJ_bJ_c$ lies on the bisector of the angle $BAC$.

1994 Spain Mathematical Olympiad, 2

Let $Oxyz$ be a trihedron whose edges $x,y, z$ are mutually perpendicular. Let $C$ be the point on the ray $z$ with $OC = c$. Points $P$ and $Q$ vary on the rays $x$ and $y$ respectively in such a way that $OP+OQ = k$ is constant. For every $P$ and $Q$, the circumcenter of the sphere through $O,C,P,Q$ is denoted by $W$. Find the locus of the projection of $W$ on the plane O$xy$. Also find the locus of points $W$.

2005 Estonia National Olympiad, 4

In a fixed plane, consider a convex quadrilateral $ABCD$. Choose a point $O$ in the plane and let $K, L, M$, and $N$ be the circumcentres of triangles $AOB, BOC, COD$, and $DOA$, respectively. Prove that there exists exactly one point $O$ in the plane such that $KLMN$ is a parallelogram.

2020 China Northern MO, BP4

In $\triangle ABC$, $\angle BAC = 60^{\circ}$, point $D$ lies on side $BC$, $O_1$ and $O_2$ are the centers of the circumcircles of $\triangle ABD$ and $\triangle ACD$, respectively. Lines $BO_1$ and $CO_2$ intersect at point $P$. If $I$ is the incenter of $\triangle ABC$ and $H$ is the orthocenter of $\triangle PBC$, then prove that the four points $B,C,I,H$ are on the same circle.

2006 Sharygin Geometry Olympiad, 19

Through the midpoints of the sides of the triangle $T$, straight lines are drawn perpendicular to the bisectors of the opposite angles of the triangle. These lines formed a triangle $T_1$. Prove that the center of the circle circumscribed about $T_1$ is in the midpoint of the segment formed by the center of the inscribed circle and the intersection point of the heights of triangle $T$.

2004 Olympic Revenge, 1

$ABC$ is a triangle and $D$ is an internal point such that $\angle DAB=\angle DBC =\angle DCA$. $O_a$ is the circumcenter of $DBC$. $O_b$ is the circumcenter of $DAC$. $O_c$ is the circumcenter of $DAB$. Show that if the area of $ABC$ and $O_aO_bO_c$ are equal then $ABC$ is equilateral.

2024 Israel National Olympiad (Gillis), P4

Acute triangle $ABC$ is inscribed in a circle with center $O$. The reflections of $O$ across the three altitudes of the triangle are called $U$, $V$, $W$: $U$ over the altitude from $A$, $V$ over the altitude from $B$, and $W$ over the altitude from $C$. Let $\ell_A$ be a line through $A$ parallel to $VW$, and define $\ell_B$, $\ell_C$ similarly. Prove that the three lines $\ell_A$, $\ell_B$, $\ell_C$ are concurrent.

1992 All Soviet Union Mathematical Olympiad, 559

$E$ is a point on the diagonal $BD$ of the square $ABCD$. Show that the points $A, E$ and the circumcenters of $ABE$ and $ADE$ form a square.

2019 Argentina National Olympiad Level 2, 3

Let $\Gamma$ be a circle of center $S$ and radius $r$ and let be $A$ a point outside the circle. Let $BC$ be a diameter of $\Gamma$ such that $B$ does not belong to the line $AS$ and consider the point $O$ where the perpendicular bisectors of triangle $ABC$ intersect, that is, the circumcenter of $ABC$. Determine all possible locations of point $O$ when $B$ varies in circle $\Gamma$.

2004 India IMO Training Camp, 1

Let $ABC$ be a triangle and let $P$ be a point in its interior. Denote by $D$, $E$, $F$ the feet of the perpendiculars from $P$ to the lines $BC$, $CA$, $AB$, respectively. Suppose that \[AP^2 + PD^2 = BP^2 + PE^2 = CP^2 + PF^2.\] Denote by $I_A$, $I_B$, $I_C$ the excenters of the triangle $ABC$. Prove that $P$ is the circumcenter of the triangle $I_AI_BI_C$. [i]Proposed by C.R. Pranesachar, India [/i]