This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 180

2022/2023 Tournament of Towns, P5

Tags: geometry , distance
The distance between any two of five given points exceeds 2. Is it true that the distance between some two of these points exceeds 3 if these five points are in a) the plane; and b) three-dimensional space? [i]Alexey Tolpygo[/i]

1987 All Soviet Union Mathematical Olympiad, 454

Vertex $B$ of the $\angle ABC$ lies out the circle, and the $[BA)$ and $[BC)$ beams intersect it. Point $K$ belongs to the intersection of the $[BA)$ beam and the circumference. Chord $KP$ is orthogonal to the angle bisector of $\angle ABC$ . Line $(KP)$ intersects the beam $BC$ in the point $M$. Prove that the segment $[PM]$ is twice as long as the distance from the circle centre to the angle bisector of $\angle ABC$ .

1990 Romania Team Selection Test, 9

The distance between any two of six given points in the plane is at least $1$. Prove that the distance between some two points is at least $\sqrt{\frac{5+\sqrt5}{2}}$

2011 BAMO, 3

Let $S$ be a finite, nonempty set of real numbers such that the distance between any two distinct points in $S$ is an element of $S$. In other words, $|x-y|$ is in $S$ whenever $x \ne y$ and $x$ and $y$ are both in $S$. Prove that the elements of $S$ may be arranged in an arithmetic progression. This means that there are numbers $a$ and $d$ such that $S = \{a, a+d, a+2d, a+3d, ..., a+kd, ...\}$.

2007 Portugal MO, 6

Tags: geometry , min , max , distance
In a village, the maximum distance between two houses is $M$ and the minimum distance is $m$. Prove that if the village has $6$ houses, then $\frac{M}{m} \ge \sqrt3$.

2005 Sharygin Geometry Olympiad, 10.5

Two circles of radius $1$ intersect at points $X, Y$, the distance between which is also equal to $1$. From point $C$ of one circle, tangents $CA, CB$ are drawn to the other. Line $CB$ will cross the first circle a second time at point $A'$. Find the distance $AA'$.

1969 IMO Shortlist, 11

$(BUL 5)$ Let $Z$ be a set of points in the plane. Suppose that there exists a pair of points that cannot be joined by a polygonal line not passing through any point of $Z.$ Let us call such a pair of points unjoinable. Prove that for each real $r > 0$ there exists an unjoinable pair of points separated by distance $r.$

2010 Junior Balkan Team Selection Tests - Romania, 1

Consider two equilateral triangles $ABC$ and $MNP$ with the property that $AB \parallel MN, BC \parallel NP$ and $CA \parallel PM$ , so that the surfaces of the triangles intersect after a convex hexagon. The distances between the three pairs of parallel lines are at most equal to $1$. Show that at least one of the two triangles has the side at most equal to $\sqrt {3}$ .

2009 Junior Balkan Team Selection Tests - Romania, 4

Consider $K$ a polygon in plane, such that the distance between any two vertices is not greater than $1$. Let $X$ and $Y$ be two points inside $K$. Show that there exist a point $Z$, lying on the border of K, such that $XZ + Y Z \le 1$

2009 Sharygin Geometry Olympiad, 3

The cirumradius and the inradius of triangle $ABC$ are equal to $R$ and $r, O, I$ are the centers of respective circles. External bisector of angle $C$ intersect $AB$ in point $P$. Point $Q$ is the projection of $P$ to line $OI$. Find distance $OQ.$ (A.Zaslavsky, A.Akopjan)

2019 ISI Entrance Examination, 8

Consider the following subsets of the plane:$$C_1=\Big\{(x,y)~:~x>0~,~y=\frac1x\Big\} $$ and $$C_2=\Big\{(x,y)~:~x<0~,~y=-1+\frac1x\Big\}$$ Given any two points $P=(x,y)$ and $Q=(u,v)$ of the plane, their distance $d(P,Q)$ is defined by $$d(P,Q)=\sqrt{(x-u)^2+(y-v)^2}$$ Show that there exists a unique choice of points $P_0\in C_1$ and $Q_0\in C_2$ such that $$d(P_0,Q_0)\leqslant d(P,Q)\quad\forall ~P\in C_1~\text{and}~Q\in C_2.$$

2013 Abels Math Contest (Norwegian MO) Final, 2

In a triangle $T$, all the angles are less than $90^o$, and the longest side has length $s$. Show that for every point $p$ in $T$ we can pick a corner $h$ in $T$ such that the distance from $p$ to $h$ is less than or equal to $s/\sqrt3$.

2018 May Olympiad, 4

In a parallelogram $ABCD$, let $M$ be the point on the $BC$ side such that $MC = 2BM$ and let $N$ be the point of side $CD$ such that $NC = 2DN$. If the distance from point $B$ to the line $AM$ is $3$, calculate the distance from point $N$ to the line $AM$.

2019 Hanoi Open Mathematics Competitions, 13

Find all points inside a given equilateral triangle such that the distances from it to three sides of the given triangle are the side lengths of a triangle.

2011 NZMOC Camp Selection Problems, 5

Let a square $ABCD$ with sides of length $1$ be given. A point $X$ on $BC$ is at distance $d$ from $C$, and a point $Y$ on $CD$ is at distance $d$ from $C$. The extensions of: $AB$ and $DX$ meet at $P$, $AD$ and $BY$ meet at $Q, AX$ and $DC$ meet at $R$, and $AY$ and $BC$ meet at $S$. If points $P, Q, R$ and $S$ are collinear, determine $d$.

2001 Estonia Team Selection Test, 2

Point $X$ is taken inside a regular $n$-gon of side length $a$. Let $h_1,h_2,...,h_n$ be the distances from $X$ to the lines defined by the sides of the $n$-gon. Prove that $\frac{1}{h_1}+\frac{1}{h_2}+...+\frac{1}{h_n}>\frac{2\pi}{a}$

2001 Estonia Team Selection Test, 2

Point $X$ is taken inside a regular $n$-gon of side length $a$. Let $h_1,h_2,...,h_n$ be the distances from $X$ to the lines defined by the sides of the $n$-gon. Prove that $\frac{1}{h_1}+\frac{1}{h_2}+...+\frac{1}{h_n}>\frac{2\pi}{a}$

1993 Chile National Olympiad, 6

Let $ ABCD $ be a rectangle of area $ S $, and $ P $ be a point inside it. We denote by $ a, b, c, d $ the distances from $ P $ to the vertices $ A, B, C, D $ respectively. Prove that $ a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2\ge 2S $. When there is equality?

2009 Swedish Mathematical Competition, 5

A semicircular arc and a diameter $AB$ with a length of $2$ are given. Let $O$ be the midpoint of the diameter. On the radius perpendicular to the diameter, we select a point $P$ at the distance $d$ from the midpoint of the diameter $O$, $0 <d <1$. A line through $A$ and $P$ intersects the semicircle at point $C$. Through point $P$ we draw another line at right angle against $AC$ that intersects the semicircle at point $D$. Through point $C$ we draw a line $l_1$, parallel to $PD$ and then a line $l_2$, through $D$ parallel to $PC$. The lines $l_1$ and $l_2$ intersect at point $E$. Show that the distance between $O$ and $E$ is equal to $\sqrt{2- d^2}$

2002 Singapore Senior Math Olympiad, 2

The vertices of a triangle inscribed in a circle are the points of tangency of a triangle circumscribed about the circle. Prove that the product of the perpendicular distances from any point on the circle to the sides of the inscribed triangle is the same as the product of the perpendicular distances from the same point to the sides of the circumscribed triangle.

2008 Balkan MO Shortlist, G8

Let $P$ be a point in the interior of a triangle $ABC$ and let $d_a,d_b,d_c$ be its distances to $BC,CA,AB$ respectively. Prove that max $(AP, BP, CP) \ge \sqrt{d_a^2+d_b^2+d_c^2}$

2018 Thailand TST, 1

Let $n$ be a positive integer. Define a chameleon to be any sequence of $3n$ letters, with exactly $n$ occurrences of each of the letters $a, b,$ and $c$. Define a swap to be the transposition of two adjacent letters in a chameleon. Prove that for any chameleon $X$ , there exists a chameleon $Y$ such that $X$ cannot be changed to $Y$ using fewer than $3n^2/2$ swaps.

2015 JBMO Shortlist, C2

$2015$ points are given in a plane such that from any five points we can choose two points with distance less than $1$ unit. Prove that $504$ of the given points lie on a unit disc.

2015 Bundeswettbewerb Mathematik Germany, 4

Let $ABC$ be a triangle, such that its incenter $I$ and circumcenter $U$ are distinct. For all points $X$ in the interior of the triangle let $d(X)$ be the sum of distances from $X$ to the three (possibly extended) sides of the triangle. Prove: If two distinct points $P,Q$ in the interior of the triangle $ABC$ satisfy $d(P)=d(Q)$, then $PQ$ is perpendicular to $UI$.

2018 Bundeswettbewerb Mathematik, 4

We are given six points in space with distinct distances, no three of them collinear. Consider all triangles with vertices among these points. Show that among these triangles there is one such that its longest side is the shortest side in one of the other triangles.