This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 95

2008 Balkan MO Shortlist, G7

In the non-isosceles triangle $ABC$ consider the points $X$ on $[AB]$ and $Y$ on $[AC]$ such that $[BX]=[CY]$, $M$ and $N$ are the midpoints of the segments $[BC]$, respectively $[XY]$, and the straight lines $XY$ and $BC$ meet in $K$. Prove that the circumcircle of triangle $KMN$ contains a point, different from $M$ , which is independent of the position of the points $X$ and $Y$.

2017 Balkan MO Shortlist, G1

Let $ABC$ be an acute triangle. Variable points $E$ and $F$ are on sides $AC$ and $AB$ respectively such that $BC^2 = BA\cdot BF + CE \cdot CA$ . As $E$ and $F$ vary prove that the circumcircle of $AEF$ passes through a fixed point other than $A$ .

2011 IFYM, Sozopol, 5

The vertices of $\Delta ABC$ lie on the graphics of the function $f(x)=x^2$ and its centroid is $M(1,7)$. Determine the greatest possible value of the area of $\Delta ABC$.

1973 IMO, 2

$G$ is a set of non-constant functions $f$. Each $f$ is defined on the real line and has the form $f(x)=ax+b$ for some real $a,b$. If $f$ and $g$ are in $G$, then so is $fg$, where $fg$ is defined by $fg(x)=f(g(x))$. If $f$ is in $G$, then so is the inverse $f^{-1}$. If $f(x)=ax+b$, then $f^{-1}(x)= \frac{x-b}{a}$. Every $f$ in $G$ has a fixed point (in other words we can find $x_f$ such that $f(x_f)=x_f$. Prove that all the functions in $G$ have a common fixed point.

2017 Saudi Arabia JBMO TST, 3

Let $BC$ be a chord of a circle $(O)$ such that $BC$ is not a diameter. Let $AE$ be the diameter perpendicular to $BC$ such that $A$ belongs to the larger arc $BC$ of $(O)$. Let $D$ be a point on the larger arc $BC$ of $(O)$ which is different from $A$. Suppose that $AD$ intersects $BC$ at $S$ and $DE$ intersects $BC$ at $T$. Let $F$ be the midpoint of $ST$ and $I$ be the second intersection point of the circle $(ODF)$ with the line $BC$. 1. Let the line passing through $I$ and parallel to $OD$ intersect $AD$ and $DE$ at $M$ and $N$, respectively. Find the maximum value of the area of the triangle $MDN$ when $D$ moves on the larger arc $BC$ of $(O)$ (such that $D \ne A$). 2. Prove that the perpendicular from $D$ to $ST$ passes through the midpoint of $MN$

2024 Romanian Master of Mathematics, 5

Let $BC$ be a fixed segment in the plane, and let $A$ be a variable point in the plane not on the line $BC$. Distinct points $X$ and $Y$ are chosen on the rays $CA^\to$ and $BA^\to$, respectively, such that $\angle CBX = \angle YCB = \angle BAC$. Assume that the tangents to the circumcircle of $ABC$ at $B$ and $C$ meet line $XY$ at $P$ and $Q$, respectively, such that the points $X$, $P$, $Y$ and $Q$ are pairwise distinct and lie on the same side of $BC$. Let $\Omega_1$ be the circle through $X$ and $P$ centred on $BC$. Similarly, let $\Omega_2$ be the circle through $Y$ and $Q$ centred on $BC$. Prove that $\Omega_1$ and $\Omega_2$ intersect at two fixed points as $A$ varies. [i]Daniel Pham Nguyen, Denmark[/i]

2009 Postal Coaching, 1

A circle $\Gamma$ and a line $\ell$ which does not intersect $\Gamma$ are given. Suppose $P, Q,R, S$ are variable points on circle $\Gamma$ such that the points $A = PQ\cap RS$ and $B = PS \cap QR$ lie on $\ell$. Prove that the circle on $AB$ as a diameter passes through two fixed points.

2007 Oral Moscow Geometry Olympiad, 6

A circle and a point $P$ inside it are given. Two arbitrary perpendicular rays starting at point $P$ intersect the circle at points $A$ and $B$. Point $X$ is the projection of point $P$ onto line $AB, Y$ is the intersection point of tangents to the circle drawn through points $A$ and $B$. Prove that all lines $XY$ pass through the same point. (A. Zaslavsky)

1985 IMO, 6

For every real number $x_1$, construct the sequence $x_1,x_2,\ldots$ by setting: \[ x_{n+1}=x_n(x_n+{1\over n}). \] Prove that there exists exactly one value of $x_1$ which gives $0<x_n<x_{n+1}<1$ for all $n$.

Kyiv City MO Seniors Round2 2010+ geometry, 2010.10.4

The points $A \ne B$ are given on the plane. The point $C$ moves along the plane in such a way that $\angle ACB = \alpha$ , where $\alpha$ is the fixed angle from the interval ($0^o, 180^o$). The circle inscribed in triangle $ABC$ has center the point $I$ and touches the sides $AB, BC, CA$ at points $D, E, F$ accordingly. Rays $AI$ and $BI$ intersect the line $EF$ at points $M$ and $N$, respectively. Show that: a) the segment $MN$ has a constant length, b) all circles circumscribed around triangle $DMN$ have a common point

2024 Brazil Undergrad MO, 2

For each pair of integers \( j, k \geq 2 \), define the function \( f_{jk} : \mathbb{R} \to \mathbb{R} \) given by \[ f_{jk}(x) = 1 - (1 - x^j)^k. \] (a) Prove that for any integers \( j, k \geq 2 \), there exists a unique real number \( p_{jk} \in (0, 1) \) such that \( f_{jk}(p_{jk}) = p_{jk} \). Furthermore, defining \( \lambda_{jk} := f'_{jk}(p_{jk}) \), prove that \( \lambda_{jk} > 1 \). (b) Prove that \( p^j_{jk} = 1 - p_{kj} \) for any integers \( j, k \geq 2 \). (c) Prove that \( \lambda_{jk} = \lambda_{kj} \) for any integers \( j, k \geq 2 \).

1985 IMO Longlists, 78

The sequence $f_1, f_2, \cdots, f_n, \cdots $ of functions is defined for $x > 0$ recursively by \[f_1(x)=x , \quad f_{n+1}(x) = f_n(x) \left(f_n(x) + \frac 1n \right)\] Prove that there exists one and only one positive number $a$ such that $0 < f_n(a) < f_{n+1}(a) < 1$ for all integers $n \geq 1.$

1998 Czech And Slovak Olympiad IIIA, 5

A circle $k$ and a point $A$ outside it are given in the plane. Prove that all trapezoids, whose non-parallel sides meet at $A$, have the same intersection of diagonals.

2012 USA Team Selection Test, 1

In acute triangle $ABC$, $\angle{A}<\angle{B}$ and $\angle{A}<\angle{C}$. Let $P$ be a variable point on side $BC$. Points $D$ and $E$ lie on sides $AB$ and $AC$, respectively, such that $BP=PD$ and $CP=PE$. Prove that as $P$ moves along side $BC$, the circumcircle of triangle $ADE$ passes through a fixed point other than $A$.

1979 IMO, 3

Two circles in a plane intersect. $A$ is one of the points of intersection. Starting simultaneously from $A$ two points move with constant speed, each travelling along its own circle in the same sense. The two points return to $A$ simultaneously after one revolution. Prove that there is a fixed point $P$ in the plane such that the two points are always equidistant from $P.$

2020 Brazil Undergrad MO, Problem 6

Let $f(x) = 2x^2 + x - 1, f^{0}(x) = x$, and $f^{n+1}(x) = f(f^{n}(x))$ for all real $x>0$ and $n \ge 0$ integer (that is, $f^{n}$ is $f$ iterated $n$ times). a) Find the number of distinct real roots of the equation $f^{3}(x) = x$ b) Find, for each $n \ge 0$ integer, the number of distinct real solutions of the equation $f^{n}(x) = 0$

Kvant 2019, M2559

Two not necessarily equal non-intersecting wooden disks, one gray and one black, are glued to a plane. An in finite angle with one gray side and one black side can be moved along the plane so that the disks remain outside the angle, while the colored sides of the angle are tangent to the disks of the same color (the tangency points are not the vertices). Prove that it is possible to draw a ray in the angle, starting from the vertex of the angle and such that no matter how the angle is positioned, the ray passes through some fixed point of the plane. (Egor Bakaev, Ilya Bogdanov, Pavel Kozhevnikov, Vladimir Rastorguev) (Junior version [url=https://artofproblemsolving.com/community/c6h2094701p15140671]here[/url]) [hide=note]There was a mistake in the text of the problem 3, we publish here the correct version. The solutions were estimated according to the text published originally.[/hide]

2019 Switzerland - Final Round, 1

Let $A$ be a point and let k be a circle through $A$. Let $B$ and $C$ be two more points on $k$. Let $X$ be the intersection of the bisector of $\angle ABC$ with $k$. Let $Y$ be the reflection of $A$ wrt point $X$, and $D$ the intersection of the straight line $YC$ with $k$. Prove that point $D$ is independent of the choice of $B$ and $C$ on the circle $k$.

2023 Myanmar IMO Training, 3

Let $\triangle ABC$ be a triangle such that $AB = AC$, and let its circumcircle be $\Gamma$. Let $\omega$ be a circle which is tangent to $AB$ and $AC$ at $B$ and $C$. Point $P$ belongs to $\omega$, and lines $PB$ and $PC$ intersect $\Gamma$ again at $Q$ and $R$. $X$ and $Y$ are points on lines $BR$ and $CQ$ such that $AX = XB$ and $AY = YC$. Show that as $P$ varies on $\omega$, the circumcircle of $\triangle AXY$ passes through a fixed point other than $A$.

2004 Germany Team Selection Test, 2

Three distinct points $A$, $B$, and $C$ are fixed on a line in this order. Let $\Gamma$ be a circle passing through $A$ and $C$ whose center does not lie on the line $AC$. Denote by $P$ the intersection of the tangents to $\Gamma$ at $A$ and $C$. Suppose $\Gamma$ meets the segment $PB$ at $Q$. Prove that the intersection of the bisector of $\angle AQC$ and the line $AC$ does not depend on the choice of $\Gamma$.

2025 ISI Entrance UGB, 1

Suppose $f \colon \mathbb{R} \longrightarrow \mathbb{R}$ is differentiable and $| f'(x)| < \frac{1}{2}$ for all $x \in \mathbb{R}$. Show that for some $x_0 \in \mathbb{R}$, $f \left( x_0 \right) = x_0$.

2021 Czech and Slovak Olympiad III A, 6

An acute triangle $ABC$ is given. Let us denote $X$ for each of its inner points $X_a, X_b, X_c$ its images in axial symmetries sequentially along the lines $BC, CA, AB$. Prove that all $X_aX_bX_c$ triangles have a common interior point. (Josef Tkadlec)

2009 Postal Coaching, 5

A point $D$ is chosen in the interior of the side $BC$ of an acute triangle $ABC$, and another point $P$ in the interior of the segment $AD$, but not lying on the median through $C$. This median (through $C$) intersects the circumcircle of a triangle $CPD$ at $K(\ne C)$. Prove that the circumcircle of triangle $AKP$ always passes through a fixed point $M(\ne A)$ independent of the choices of the points $D$ and $P.$

1979 IMO Longlists, 71

Two circles in a plane intersect. $A$ is one of the points of intersection. Starting simultaneously from $A$ two points move with constant speed, each travelling along its own circle in the same sense. The two points return to $A$ simultaneously after one revolution. Prove that there is a fixed point $P$ in the plane such that the two points are always equidistant from $P.$

2003 IMO Shortlist, 2

Three distinct points $A$, $B$, and $C$ are fixed on a line in this order. Let $\Gamma$ be a circle passing through $A$ and $C$ whose center does not lie on the line $AC$. Denote by $P$ the intersection of the tangents to $\Gamma$ at $A$ and $C$. Suppose $\Gamma$ meets the segment $PB$ at $Q$. Prove that the intersection of the bisector of $\angle AQC$ and the line $AC$ does not depend on the choice of $\Gamma$.