Found problems: 25757
Novosibirsk Oral Geo Oly VII, 2020.6
Angle bisectors $AA', BB'$and $CC'$ are drawn in triangle $ABC$ with angle $\angle B= 120^o$. Find $\angle A'B'C'$.
2023 HMNT, 6
Let $ABCD$ be a square of side length $5$. A circle passing through $A$ is tangent to segment $CD$ at $T$ and meets $AB$ and $AD$ again at $X\ne A$ and $Y\ne A$, respectively. Given that $XY = 6$, compute $AT$.
1975 Chisinau City MO, 106
Construct a square from four points, one on each side.
2014 Sharygin Geometry Olympiad, 1
The incircle of a right-angled triangle $ABC$ touches its catheti $AC$ and $BC$ at points $B_1$ and $A_1$, the hypotenuse touches the incircle at point $C_1$. Lines $C_1A_1$ and $C_1B_1$ meet $CA$ and $CB$ respectively at points $B_0$ and $A_0$. Prove that $AB_0 = BA_0$.
(J. Zajtseva, D. Shvetsov )
1966 Czech and Slovak Olympiad III A, 4
Two triangles $ABC,ABD$ (with the common side $c=AB$) are given in space. Triangle $ABC$ is right with hypotenuse $AB$, $ABD$ is equilateral. Denote $\varphi$ the dihedral angle between planes $ABC,ABD$.
1) Determine the length of $CD$ in terms of $a=BC,b=CA,c$ and $\varphi$.
2) Determine all values of $\varphi$ such that the tetrahedron $ABCD$ has four sides of the same length.
2020 CMIMC Geometry, 8
Let $\mathcal E$ be an ellipse with foci $F_1$ and $F_2$. Parabola $\mathcal P$, having vertex $F_1$ and focus $F_2$, intersects $\mathcal E$ at two points $X$ and $Y$. Suppose the tangents to $\mathcal E$ at $X$ and $Y$ intersect on the directrix of $\mathcal P$. Compute the eccentricity of $\mathcal E$.
(A [i]parabola[/i] $\mathcal P$ is the set of points which are equidistant from a point, called the [i]focus[/i] of $\mathcal P$, and a line, called the [i]directrix[/i] of $\mathcal P$. An [i]ellipse[/i] $\mathcal E$ is the set of points $P$ such that the sum $PF_1 + PF_2$ is some constant $d$, where $F_1$ and $F_2$ are the [i]foci[/i] of $\mathcal E$. The [i]eccentricity[/i] of $\mathcal E$ is defined to be the ratio $F_1F_2/d$.)
2012 Swedish Mathematical Competition, 3
The catheti $AC$ and $BC$ in a right-angled triangle $ABC$ have lengths $b$ and $a$, respectively. A circle centered at $C$ is tangent to hypotenuse $AB$ at point $D$. The tangents to the circle through points $A$ and $B$ intersect the circle at points $E$ and $F$, respectively (where $E$ and $F$ are both different from $D$). Express the length of the segment $EF$ in terms of $a$ and $b$.
1990 Swedish Mathematical Competition, 2
The points $A_1, A_2,.. , A_{2n}$ are equally spaced in that order along a straight line with $A_1A_2 = k$. $P$ is chosen to minimise $\sum PA_i$. Find the minimum.
2021 Moldova EGMO TST, 2
In triangle $ABC$ point $M$ is on side $AB$ such that $AM:AB=3:4$ and point $P$ is on side $BC$ such that $CP:CB=3:8$. Point $N$ is symmetric to $A$ with respect to point $P$. Prove that lines $MN$ and $AC$ are parallel.
2011 JBMO Shortlist, 6
Let $ABCD$ be a convex quadrilateral and points $E$ and $F$ on sides $AB,CD$ such that
\[\tfrac{AB}{AE}=\tfrac{CD}{DF}=n\]
If $S$ is the area of $AEFD$ show that ${S\leq\frac{AB\cdot CD+n(n-1)AD^2+n^2DA\cdot BC}{2n^2}}$
2012 NIMO Problems, 7
In quadrilateral $ABCD$, $AC = BD$ and $\measuredangle B = 60^\circ$. Denote by $M$ and $N$ the midpoints of $\overline{AB}$ and $\overline{CD}$, respectively. If $MN = 12$ and the area of quadrilateral $ABCD$ is 420, then compute $AC$.
[i]Proposed by Aaron Lin[/i]
2016 Hanoi Open Mathematics Competitions, 11
Let be given a triangle $ABC$, and let $I$ be the midpoint of $BC$. The straight line $d$ passing $I$ intersects $AB,AC$ at $M,N$ , respectively. The straight line $d'$ ($\ne d$) passing $I$ intersects $AB, AC$ at $Q, P$ , respectively. Suppose $M, P$ are on the same side of $BC$ and $MP , NQ$ intersect $BC$ at $E$ and $F$, respectively. Prove that $IE = I F$.
2024 Indonesia TST, G
Given an acute triangle $ABC$. The incircle with center $I$ touches $BC,CA,AB$ at $D,E,F$ respectively. Let $M,N$ be the midpoint of the minor arc of $AB$ and $AC$ respectively. Prove that $M,F,E,N$ are collinear if and only if $\angle BAC =90$$^{\circ}$
2025 District Olympiad, P1
Let $ABCD$ be a parallelogram of center $O$. Prove that for any point $M\in (AB)$, there exist unique points $N\in (OC)$ and $P\in (OD)$ such that $O$ is the center of mass of $\triangle MNP$.
2022/2023 Tournament of Towns, P3
Baron Munchausen claims that he has drawn a polygon and chosen a point inside the polygon in such a way that any line passing through the chosen point divides the polygon into three polygons. Could the Baron’s claim be correct?
2009 Oral Moscow Geometry Olympiad, 2
Trapezium $ABCD$ and parallelogram $MBDK$ are located so that the sides of the parallelogram are parallel to the diagonals of the trapezoid (see fig.). Prove that the area of the gray part is equal to the sum of the areas of the black part.
(Yu. Blinkov)
[img]https://cdn.artofproblemsolving.com/attachments/b/9/cfff83b1b85aea16b603995d4f3d327256b60b.png[/img]
MMPC Part II 1996 - 2019, 1996
[b]p1.[/b] An Egyptian fraction has the form $1/n$, where $n$ is a positive integer. In ancient Egypt, these were the only fractions allowed. Other fractions between zero and one were always expressed as a sum of distinct Egyptian fractions. For example, $3/5$ was seen as $1/2 + 1/10$, or $1/3 + 1/4 + 1/60$. The preferred method of representing a fraction in Egypt used the "greedy" algorithm, which at each stage, uses the Egyptian fraction that eats up as much as possible of what is left of the original fraction. Thus the greedy fraction for $3/5$ would be $1/2 + 1/10$.
a) Find the greedy Egyptian fraction representations for $2/13$.
b) Find the greedy Egyptian fraction representations for $9/10$.
c) Find the greedy Egyptian fraction representations for $2/(2k+1)$, where $k$ is a positive integer.
d) Find the greedy Egyptian fraction representations for $3/(6k+1)$, where $k$ is a positive integer.
[b]p2.[/b] a) The smaller of two concentric circles has radius one unit. The area of the larger circle is twice the area of the smaller circle. Find the difference in their radii.
[img]https://cdn.artofproblemsolving.com/attachments/8/1/7c4d81ebfbd4445dc31fa038d9dc68baddb424.png[/img]
b) The smaller of two identically oriented equilateral triangles has each side one unit long. The smaller triangle is centered within the larger triangle so that the perpendicular distance between parallel sides is always the same number $d$. The area of the larger triangle is twice the area of the smaller triangle. Find $d$.
[img]https://cdn.artofproblemsolving.com/attachments/8/7/1f0d56d8e9e42574053c831fa129eb40c093d9.png[/img]
[b]p3.[/b] Suppose that the domain of a function $f$ is the set of real numbers and that $f$ takes values in the set of real numbers. A real number $x_0$ is a fixed point of f if $f(x_0) = x_0$.
a) Let $f(x) = m x + b$. For which $m$ does $f$ have a fixed point?
b) Find the fixed point of f$(x) = m x + b$ in terms of m and b, when it exists.
c) Consider the functions $f_c(x) = x^2 - c$.
i. For which values of $c$ are there two different fixed points?
ii. For which values of $c$ are there no fixed points?
iii. In terms of $c$, find the value(s) of the fixed point(s).
d) Find an example of a function that has exactly three fixed points.
[b]p4.[/b] A square based pyramid is made out of rubber balls. There are $100$ balls on the bottom level, 81 on the next level, etc., up to $1$ ball on the top level.
a) How many balls are there in the pyramid?
b) If each ball has a radius of $1$ meter, how tall is the pyramid?
c) What is the volume of the solid that you create if you place a plane against each of the four sides and the base of the balls?
[b]p5.[/b] We wish to consider a general deck of cards specified by a number of suits, a sequence of denominations, and a number (possibly $0$) of jokers. The deck will consist of exactly one card of each denomination from each suit, plus the jokers, which are "wild" and can be counted as any possible card of any suit. For example, a standard deck of cards consists of $4$ suits, $13$ denominations, and $0$ jokers.
a) For a deck with $3$ suits $\{a, b, c\}$ and $7$ denominations $\{1, 2, 3, 4, 5, 6, 7\}$, and $0$ jokers, find the probability that a 3-card hand will be a straight. (A straight consists of $3$ cards in sequence, e.g., $1 \heartsuit$ ,$2 \spadesuit$ , $3\clubsuit$ , $2\diamondsuit$ but not $6 \heartsuit$ ,$7 \spadesuit$ , $1\diamondsuit$).
b) For a deck with $3$ suits, $7$ denominations, and $0$ jokers, find the probability that a $3$-card hand will consist of $3$ cards of the same suit (i.e., a flush).
c) For a deck with $3$ suits, $7$ denominations, and $1$ joker, find the probability that a $3$-card hand dealt at random will be a straight and also the probability that a $3$-card hand will be a flush.
d) Find a number of suits and the length of the denomination sequence that would be required if a deck is to contain $1$ joker and is to have identical probabilities for a straight and a flush when a $3$-card hand is dealt. The answer that you find must be an answer such that a flush and a straight are possible but not certain to occur.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2001 National Olympiad First Round, 29
Let $ABCD$ be a isosceles trapezoid such that $AB || CD$ and all of its sides are tangent to a circle. $[AD]$ touches this circle at $N$. $NC$ and $NB$ meet the circle again at $K$ and $L$, respectively. What is $\dfrac {|BN|}{|BL|} + \dfrac {|CN|}{|CK|}$?
$
\textbf{(A)}\ 4
\qquad\textbf{(B)}\ 6
\qquad\textbf{(C)}\ 8
\qquad\textbf{(D)}\ 9
\qquad\textbf{(E)}\ 10
$
2006 Alexandru Myller, 2
$ ABC $ is a triangle with $ \angle BCA= 90^{\circ } $ and $ D,E $ on sides $ BC,CA, $ rspectively, so that $ \frac{BD}{AC}=\frac{AE}{CD}=k. $ The line $ BE $ meets $ AD $ at $ O. $ Show that $ \angle BOD =60^{\circ } $ if and only if $ k=\sqrt 3. $
1991 Greece Junior Math Olympiad, 2
Given a semicircle of diameter $AB$ and center $O$. Let $CD$ be the chord of the semicircle tangent to two circles of diameters $AO$ and $OB$. If $CD=120$ cm,, caclulate area of the semicircle.
1956 Moscow Mathematical Olympiad, 329
Consider positive numbers $h, s_1, s_2$, and a spatial triangle $\vartriangle ABC$. How many ways are there to select a point $D$ so that the height of tetrahedron $ABCD$ drawn from $D$ equals $h$, and the areas of faces $ACD$ and $BCD$ equal $s_1$ and $s_2$, respectively?
2021 AMC 12/AHSME Fall, 9
Triangle $ABC$ is equilateral with side length $6$. Suppose that $O$ is the center of the inscribed circle of this triangle. What is the area of the circle passing through $A$, $O$, and $C$?
$\textbf{(A)}\ 9\pi \qquad\textbf{(B)}\ 12\pi \qquad\textbf{(C)}\ 18\pi \qquad\textbf{(D)}\
24\pi \qquad\textbf{(E)}\ 27\pi$
2010 Romania National Olympiad, 3
Let $VABCD$ be a regular pyramid, having the square base $ABCD$. Suppose that on the line $AC$ lies a point $M$ such that $VM=MB$ and $(VMB)\perp (VAB)$. Prove that $4AM=3AC$.
[i]Mircea Fianu[/i]
2018 ELMO Shortlist, 4
Let $ABCDEF$ be a hexagon inscribed in a circle $\Omega$ such that triangles $ACE$ and $BDF$ have the same orthocenter. Suppose that segments $BD$ and $DF$ intersect $CE$ at $X$ and $Y$, respectively. Show that there is a point common to $\Omega$, the circumcircle of $DXY$, and the line through $A$ perpendicular to $CE$.
[i]Proposed by Michael Ren and Vincent Huang[/i]
2004 Oral Moscow Geometry Olympiad, 1
$E$ and $F$ are the midpoints of the sides $BC$ and $AD$ of the convex quadrilateral $ABCD$. Prove that the segment $EF$ divides the diagonals $AC$ and $BD$ in the same ratio.