This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

KoMaL A Problems 2022/2023, A. 831

Tags: geometry
In triangle $ABC$ let $F$ denote the midpoint of side $BC$. Let the circle passing through point $A$ and tangent to side $BC$ at point $F$ intersect sides $AB$ and $AC$ at points $M$ and $N$, respectively. Let the line segments $CM$ and $BN$ intersect in point $X$. Let $P$ be the second point of intersection of the circumcircles of triangles $BMX$ and $CNX$. Prove that points $A, F$ and $P$ are collinear. Proposed by Imolay András, Budapest

2005 China Girls Math Olympiad, 1

As shown in the following figure, point $ P$ lies on the circumcicle of triangle $ ABC.$ Lines $ AB$ and $ CP$ meet at $ E,$ and lines $ AC$ and $ BP$ meet at $ F.$ The perpendicular bisector of line segment $ AB$ meets line segment $ AC$ at $ K,$ and the perpendicular bisector of line segment $ AC$ meets line segment $ AB$ at $ J.$ Prove that \[ \left(\frac{CE}{BF} \right)^2 \equal{} \frac{AJ \cdot JE}{AK \cdot KF}.\]

2004 Tournament Of Towns, 1

Tags: geometry
In triangle $ABC$ the bisector of angle $A$, the perpendicular to side $AB$ from its midpoint, and the altitude from vertex $B$, intersect in the same point. Prove that the bisector of angle $A$, the perpendicular to side $AC$ from its midpoint, and the altitude from vertex $C$ also intersect in the same point.

2006 AIME Problems, 11

Tags: geometry
A sequence is defined as follows $a_1=a_2=a_3=1$, and, for all positive integers $n$, $a_{n+3}=a_{n+2}+a_{n+1}+a_n$. Given that $a_{28}=6090307$, $a_{29}=11201821$, and $a_{30}=20603361$, find the remainder when $\displaystyle \sum^{28}_{k=1} a_k$ is divided by 1000.

2012 Danube Mathematical Competition, 3

Let $ABC$ be a triangle with $\angle BAC = 90^o$. Angle bisector of the $\angle CBA$ intersects the segment $(AB)$ at point $E$. If there exists $D \in (CE)$ so that $\angle DAC = \angle BDE =x^o$ , calculate $x$.

2019 Thailand TSTST, 2

Let $\Omega$ be the inscribed circle of a triangle $\vartriangle ABC$. Let $D, E$ and $F$ be the tangency points of $\Omega$ and the sides $BC, CA$ and $AB$, respectively, and let $AD, BE$ and $CF$ intersect $\Omega$ at $K, L$ and $M$, respectively, such that $D, E, F, K, L$ and $M$ are all distinct. The tangent line of $\Omega$ at $K$ intersects $EF$ at $X$, the tangent line of $\Omega$ at $L$ intersects $DE$ at $Y$ , and the tangent line of $\Omega$ at M intersects $DF$ at $Z$. Prove that $X,Y$ and $Z$ are collinear.

2003 Turkey Team Selection Test, 2

Let $K$ be the intersection of the diagonals of a convex quadrilateral $ABCD$. Let $L\in [AD]$, $M \in [AC]$, $N \in [BC]$ such that $KL\parallel AB$, $LM\parallel DC$, $MN\parallel AB$. Show that \[\dfrac{Area(KLMN)}{Area(ABCD)} < \dfrac {8}{27}.\]

LMT Team Rounds 2021+, 9

Tags: geometry
In isosceles trapezoid $ABCD$ with $AB < CD$ and $BC = AD$, the angle bisectors of $\angle A$ and $\angle B$ intersect $CD$ at $E$ and $F$ respectively, and intersect each other outside the trapezoid at $G$. Given that $AD = 8$, $EF = 3$, and $EG = 4$, the area of $ABCD$ can be expressed as $\frac{a\sqrt{b}}{c}$ for positive integers $a, b$, and $c$, with $a$ and $c$ relatively prime and $b$ squarefree. Find $10000a +100b +c$.

2021 Latvia TST, 2.6

Tags: geometry
Let $ABCD$ be a convex quadrilateral with $\angle ABC>90$, $CDA>90$ and $\angle DAB=\angle BCD$. Denote by $E$ and $F$ the reflections of $A$ in lines $BC$ and $CD$, respectively. Suppose that the segments $AE$ and $AF$ meet the line $BD$ at $K$ and $L$, respectively. Prove that the circumcircles of triangles $BEK$ and $DFL$ are tangent to each other. $\emph{Slovakia}$

2014 International Zhautykov Olympiad, 3

Four segments divide a convex quadrilateral into nine quadrilaterals. The points of intersections of these segments lie on the diagonals of the quadrilateral (see figure). It is known that the quadrilaterals 1, 2, 3, 4 admit inscribed circles. Prove that the quadrilateral 5 also has an inscribed circle. [asy] pair A,B,C,D,E,F,G,H,I,J,K,L; A=(-4.0,4.0);B=(-1.06,4.34);C=(-0.02,4.46);D=(4.14,4.93);E=(3.81,0.85);F=(3.7,-0.42); G=(3.49,-3.05);H=(1.37,-2.88);I=(-1.46,-2.65);J=(-2.91,-2.52);K=(-3.14,-1.03);L=(-3.61,1.64); draw(A--D);draw(D--G);draw(G--J);draw(J--A); draw(A--G);draw(D--J); draw(B--I);draw(C--H);draw(E--L);draw(F--K); pair R,S,T,U,V; R=(-2.52,2.56);S=(1.91,2.58);T=(-0.63,-0.11);U=(-2.37,-1.94);V=(2.38,-2.06); label("1",R,N);label("2",S,N);label("3",T,N);label("4",U,N);label("5",V,N); [/asy] [i]Proposed by Nairi M. Sedrakyan, Armenia[/i]

2004 Alexandru Myller, 2

On a non-rhombus parallelogram $ ABCD, $ the vertex $ B $ is projected on $ AC $ in the point $ E. $ The perpendicular on $ BD $ thru $ E $ intersects the lines $ BC $ and $ AB $ in $ F $ and $ G, $ respectively. Show that $ EF=EG $ if and only if $ \angle ABC=90^{\circ } . $ [i]Mircea Becheanu[/i]

2016 Sharygin Geometry Olympiad, P17

Let $D$ be an arbitrary point on side $BC$ of triangle $ABC$. Circles $\omega_1$ and $\omega_2$ pass through $A$ and $D$ in such a way that $BA$ touches $\omega_1$ and $CA$ touches $\omega_2$. Let $BX$ be the second tangent from $B$ to $\omega_1$, and $CY$ be the second tangent from $C$ to $\omega_2$. Prove that the circumcircle of triangle $XDY$ touches $BC$.

2001 AMC 12/AHSME, 13

The parabola with equation $ y \equal{} ax^2 \plus{} bx \plus{} c$ and vertex $ (h,k)$ is reflected about the line $ y \equal{} k$. This results in the parabola with equation $ y \equal{} dx^2 \plus{} ex \plus{} f$. Which of the following equals $ a \plus{} b \plus{} c \plus{} d \plus{} e \plus{} f$? $ \textbf{(A)} \ 2b \qquad \textbf{(B)} \ 2c \qquad \textbf{(C)} \ 2a \plus{} 2b \qquad \textbf{(D)} \ 2h \qquad \textbf{(E)} \ 2k$

2012-2013 SDML (Middle School), 5

Seven squares are arranged to form a rectangle as shown below. The side length of the smallest square is $3$ cm. What is the perimeter in centimeters of the rectangle formed by the $7$ squares? [asy] draw((0,0)--(57,0)--(57,63)--(0,63)--cycle); draw((12,27)--(12,39)); draw((24,27)--(24,63)); draw((27,0)--(27,30)); draw((0,27)--(27,27)); draw((24,30)--(57,30)); draw((0,39)--(24,39)); [/asy]

2015 Sharygin Geometry Olympiad, P17

Let $O$ be the circumcenter of a triangle $ABC$. The projections of points $D$ and $X$ to the sidelines of the triangle lie on lines $\ell $ and $L $ such that $\ell // XO$. Prove that the angles formed by $L$ and by the diagonals of quadrilateral $ABCD$ are equal.

2005 Harvard-MIT Mathematics Tournament, 1

The volume of a cube (in cubic inches) plus three times the total length of its edges (in inches) is equal to twice its surface area (in square inches). How many inches long is its long diagonal?

2005 China National Olympiad, 5

There are 5 points in a rectangle (including its boundary) with area 1, no three of them are in the same line. Find the minimum number of triangles with the area not more than $\frac 1{4}$, vertex of which are three of the five points.

2005 Harvard-MIT Mathematics Tournament, 7

Let $ABCD$ be a tetrahedron such that edges $AB$, $AC$, and $AD$ are mutually perpendicular. Let the areas of triangles $ABC$, $ACD$, and $ADB$ be denoted by $x$, $y$, and $z$, respectively. In terms of $x$, $y$, and $z$, find the area of triangle $BCD$.

1995 APMO, 4

Let $C$ be a circle with radius $R$ and centre $O$, and $S$ a fixed point in the interior of $C$. Let $AA'$ and $BB'$ be perpendicular chords through $S$. Consider the rectangles $SAMB$, $SBN'A'$, $SA'M'B'$, and $SB'NA$. Find the set of all points $M$, $N'$, $M'$, and $N$ when $A$ moves around the whole circle.

1982 IMO, 3

Let $S$ be a square with sides length $100$. Let $L$ be a path within $S$ which does not meet itself and which is composed of line segments $A_0A_1,A_1A_2,A_2A_3,\ldots,A_{n-1}A_n$ with $A_0=A_n$. Suppose that for every point $P$ on the boundary of $S$ there is a point of $L$ at a distance from $P$ no greater than $\frac {1} {2}$. Prove that there are two points $X$ and $Y$ of $L$ such that the distance between $X$ and $Y$ is not greater than $1$ and the length of the part of $L$ which lies between $X$ and $Y$ is not smaller than $198$.

2012 Denmark MO - Mohr Contest, 5

In the hexagon $ABCDEF$, all angles are equally large. The side lengths satisfy $AB = CD = EF = 3$ and $BC = DE = F A = 2$. The diagonals $AD$ and $CF$ intersect each other in the point $G$. The point $H$ lies on the side $CD$ so that $DH = 1$. Prove that triangle $EGH$ is equilateral.

2006 Putnam, A1

Find the volume of the region of points $(x,y,z)$ such that \[\left(x^{2}+y^{2}+z^{2}+8\right)^{2}\le 36\left(x^{2}+y^{2}\right). \]

2017 Purple Comet Problems, 9

Tags: geometry
The diagram below shows $\vartriangle ABC$ with point $D$ on side $\overline{BC}$. Three lines parallel to side $\overline{BC}$ divide segment $\overline{AD}$ into four equal segments. In the triangle, the ratio of the area of the shaded region to the area of the unshaded region is $\frac{49}{33}$ and $\frac{BD}{CD} = \frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find $m + n$. [img]https://cdn.artofproblemsolving.com/attachments/2/8/77239633b68f073f4193aa75cdfb9238461cae.png[/img]

2018 Saudi Arabia GMO TST, 3

Let $C$ be a point lies outside the circle $(O)$ and $CS, CT$ are tangent lines of $(O)$. Take two points $A, B$ on $(O)$ with $M$ is the midpoint of the minor arc $AB$ such that $A, B, M$ differ from $S, T$. Suppose that $MS, MT$ cut line $AB$ at $E, F$. Take $X \in OS$ and $Y \in OT$ such that $EX, FY$ are perpendicular to $AB$. Prove that $X Y$ and $C M$ are perpendicular.

2019 Serbia Team Selection Test, P2

Tags: geometry
Given triangle $\triangle ABC $ with $AC\neq BC $,and let $D $ be a point inside triangle such that $\measuredangle ADB=90^{\circ} + \frac {1}{2}\measuredangle ACB $.Tangents from $C $ to the circumcircles of $\triangle ABC $ and $\triangle ADC $ intersect $AB $ and $AD $ at $P $ and $Q $ , respectively.Prove that $PQ $ bisects the angle $\measuredangle BPC $.