Found problems: 25757
1996 IberoAmerican, 2
Let $\triangle{ABC}$ be a triangle, $D$ the midpoint of $BC$, and $M$ be the midpoint of $AD$. The line $BM$ intersects the side $AC$ on the point $N$. Show that $AB$ is tangent to the circuncircle to the triangle $\triangle{NBC}$ if and only if the following equality is true:
\[\frac{{BM}}{{MN}} =\frac{({BC})^2}{({BN})^2}.\]
2019 China Team Selection Test, 5
Let $M$ be the midpoint of $BC$ of triangle $ABC$. The circle with diameter $BC$, $\omega$, meets $AB,AC$ at $D,E$ respectively. $P$ lies inside $\triangle ABC$ such that $\angle PBA=\angle PAC, \angle PCA=\angle PAB$, and $2PM\cdot DE=BC^2$. Point $X$ lies outside $\omega$ such that $XM\parallel AP$, and $\frac{XB}{XC}=\frac{AB}{AC}$. Prove that $\angle BXC +\angle BAC=90^{\circ}$.
2004 Canada National Olympiad, 3
Let $ A,B,C,D$ be four points on a circle (occurring in clockwise order), with $ AB<AD$ and $ BC>CD$. The bisectors of angles $ BAD$ and $ BCD$ meet the circle at $ X$ and $ Y$, respectively. Consider the hexagon formed by these six points on the circle. If four of the six sides of the hexagon have equal length, prove that $ BD$ must be a diameter of the circle.
2008 ITest, 67
At lunch, the seven members of the Kubik family sit down to eat lunch together at a round table. In how many distinct ways can the family sit at the table if Alexis refuses to sit next to Joshua? (Two arrangements are not considered distinct if one is a rotation of the other.)
1985 All Soviet Union Mathematical Olympiad, 412
One of two circumferences of radius $R$ comes through $A$ and $B$ vertices of the $ABCD$ parallelogram. Another comes through $B$ and $D$. Let $M$ be another point of circumferences intersection. Prove that the circle circumscribed around $AMD$ triangle has radius $R$.
2024 Thailand Mathematical Olympiad, 8
Let $ABCDEF$ be a convex hexagon and denote $U$,$V$,$W$,$X$,$Y$ and $Z$ be the midpoint of $AB$,$BC$,$CD$,$DE$,$EF$ and $FA$ respectively.
Prove that the length of $UX$,$VY$,$WZ$ can be the length of each sides of some triangle.
2012 Cuba MO, 2
Given the triangle $ABC$, let $L$, $M$ and $N $be the midpoints of $BC$, $CA$ and $AB$ respectively. The lines $LM$ and $LN$ cut the tangent to the circumcircle at $A$ at $P$ and $Q$ respectively . Prove that $CP \parallel BQ$.
1955 Polish MO Finals, 6
Through points $ A $ and $ B $ two oblique lines $ m $ and $ n $ are drawn perpendicular to the line $ AB $. On line $ m $ the point $ C $ (different from $ A $) is taken, and on line $ n $ the point $ D $ (different from $ B $) is taken. Given the lengths of segments $ AB = d $ and $ CD = l $ and the angle $ \varphi $ formed by the oblique lines $ m $ and $ n $, calculate the radius of the surface of the sphere passing through the points $ A $, $ B $, $ C $, $ D $.
1992 IMO Longlists, 42
In a triangle $ ABC,$ let $ D$ and $ E$ be the intersections of the bisectors of $ \angle ABC$ and $ \angle ACB$ with the sides $ AC,AB,$ respectively. Determine the angles $ \angle A,\angle B, \angle C$ if $ \angle BDE \equal{} 24 ^{\circ},$ $ \angle CED \equal{} 18 ^{\circ}.$
2023 Chile TST Ibero., 4
Let \(ABC\) be a triangle with \(AB < AC\) and let \(\omega\) be its circumcircle. Let \(M\) denote the midpoint of side \(BC\) and \(N\) the midpoint of arc \(BC\) of \(\omega\) that contains \(A\). The circumcircle of triangle \(AMN\) intersects sides \(AB\) and \(AC\) at points \(P\) and \(Q\), respectively. Prove that \(BP = CQ\).
1997 Romania Team Selection Test, 1
We are given in the plane a line $\ell$ and three circles with centres $A,B,C$ such that they are all tangent to $\ell$ and pairwise externally tangent to each other. Prove that the triangle $ABC$ has an obtuse angle and find all possible values of this this angle.
[i]Mircea Becheanu[/i]
2018 Brazil Team Selection Test, 1
Let $ABCDE$ be a convex pentagon such that $AB=BC=CD$, $\angle{EAB}=\angle{BCD}$, and $\angle{EDC}=\angle{CBA}$. Prove that the perpendicular line from $E$ to $BC$ and the line segments $AC$ and $BD$ are concurrent.
2013 NIMO Problems, 9
Let $ABCD$ be a square of side length $6$. Points $E$ and $F$ are selected on rays $AB$ and $AD$ such that segments $EF$ and $BC$ intersect at a point $L$, $D$ lies between $A$ and $F$, and the area of $\triangle AEF$ is 36. Clio constructs triangle $PQR$ with $PQ=BL$, $QR=CL$ and $RP=DF$, and notices that the area of $\triangle PQR$ is $\sqrt{6}$. If the sum of all possible values of $DF$ is $\sqrt{m} + \sqrt{n}$ for positive integers $m \ge n$, compute $100m+n$.
[i]Based on a proposal by Calvin Lee[/i]
2009 AIME Problems, 11
Consider the set of all triangles $ OPQ$ where $ O$ is the origin and $ P$ and $ Q$ are distinct points in the plane with nonnegative integer coordinates $ (x,y)$ such that $ 41x\plus{}y \equal{} 2009$. Find the number of such distinct triangles whose area is a positive integer.
1997 USAMO, 4
To [i]clip[/i] a convex $n$-gon means to choose a pair of consecutive sides $AB, BC$ and to replace them by the three segments $AM, MN$, and $NC$, where $M$ is the midpoint of $AB$ and $N$ is the midpoint of $BC$. In other words, one cuts off the triangle $MBN$ to obtain a convex $(n+1)$-gon. A regular hexagon ${\cal P}_6$ of area 1 is clipped to obtain a heptagon ${\cal P}_7$. Then ${\cal P}_7$ is clipped (in one of the seven possible ways) to obtain an octagon ${\cal P}_8$, and so on. Prove that no matter how the clippings are done, the area of ${\cal P}_n$ is greater than $\frac 13$, for all $n \geq 6$.
1988 Poland - Second Round, 3
Inside the acute-angled triangle $ ABC $ we consider the point $ P $ and its projections $ L, M, N $ to the sides $ BC, CA, AB $, respectively. Determine the point $ P $ for which the sum $ |BL|^2 + |CM|^2 + |AN|^2 $ is the smallest.
1955 Moscow Mathematical Olympiad, 297
Given two distinct nonintersecting circles none of which is inside the other.
Find the locus of the midpoints of all segments whose endpoints lie on the circles.
2024 Romania EGMO TST, P3
$AL$ is internal bisector of scalene $\triangle ABC$ ($L \in BC$). $K$ is chosen on segment $AL$. Point $P$ lies on the same side with respect to line $BC$ as point $A$ such that $\angle BPL = \angle CKL$ and $\angle CPL = \angle BKL$. $M$ is midpoint of segment $KP$, and $D$ is foot of perpendicular from $K$ on $BC$. Prove that $\angle AMD = 180^\circ - |\angle ABC - \angle ACB|$.
[i]Proposed by Mykhailo Shtandenko and Fedir Yudin[/i]
2016 Israel Team Selection Test, 3
Prove that there exists an ellipsoid touching all edges of an octahedron if and only if the octahedron's diagonals intersect. (Here an octahedron is a polyhedron consisting of eight triangular faces, twelve edges, and six vertices such that four faces meat at each vertex. The diagonals of an octahedron are the lines connecting pairs of vertices not connected by an edge).
LMT Guts Rounds, 2019 F
[u]Round 9[/u]
[b]p25.[/b] Find the largest prime factor of $1031301$.
[b]p26.[/b] Let $ABCD$ be a trapezoid such that $AB \parallel CD$, $\angle ABC = 90^o$ , $AB = 5$, $BC = 20$, $CD = 15$. Let $X$, $Y$ be the intersection of the circle with diameter $BC$ and segment $AD$. Find the length of $XY$.
[b]p27.[/b] A string consisting of $1$’s, $2$’s, and $3$’s is said to be a superpermutation of the string $123$ if it contains every permutation of $123$ as a contiguous substring. Find the smallest possible length of such a superpermutation.
[u]Round 10[/u]
[b]p28.[/b] Suppose that we have a function $f (x) = x^3 -3x^2 +3x$, and for all $n \ge 1$, $f^n(x)$ is defined by the function $f$ applied $n$ times to $x$. Find the remainder when $f^5(2019)$ is divided by $100$.
[b]p29.[/b] A function $f : {1,2, . . . ,10} \to {1,2, . . . ,10}$ is said to be happy if it is a bijection and for all $n \in {1,2, . . . ,10}$, $|n - f (n)| \le 1$. Compute the number of happy functions.
[b]p30.[/b] Let $\vartriangle LMN$ have side lengths $LM = 15$, $MN = 14$, and $NL = 13$. Let the angle bisector of $\angle MLN$ meet the circumcircle of $\vartriangle LMN$ at a point $T \ne L$. Determine the area of $\vartriangle LMT$ .
[u]Round 11[/u]
[b]p31.[/b] Find the value of $$\sum_{d|2200} \tau (d),$$ where $\tau (n)$ denotes the number of divisors of $n$, and where $a|b$ means that $\frac{b}{a}$ is a positive integer.
[b]p32.[/b] Let complex numbers $\omega_1,\omega_2, ...,\omega_{2019}$ be the solutions to the equation $x^{2019}-1 = 0$. Evaluate $$\sum^{2019}_{i=1} \frac{1}{1+ \omega_i}.$$
[b]p33.[/b] Let $M$ be a nonnegative real number such that $x^{x^{x^{...}}}$ diverges for all $x >M$, and $x^{x^{x^{...}}}$ converges for all $0 < x \le M$. Find $M$.
[u]Round 12[/u]
[b]p34.[/b] Estimate the number of digits in ${2019 \choose 1009}$. If your estimate is $E$ and the actual value is $A$, your score for this problem will be $$\max \, \left( 0, \left \lfloor 15-10 \cdot \left|\log_{10} \left( \frac{A}{E} \right) \right| \right \rfloor \right).$$
[b]p35.[/b] You may submit any integer $E$ from $1$ to $30$. Out of the teams that submit this problem, your score will be $$\frac{E}{2 \, (the\,\, number\,\, of\,\, teams\,\, who\,\, chose\,\, E)}$$
[b]p36.[/b] We call a $m \times n$ domino-tiling a configuration of $2\times 1$ dominoes on an $m\times n$ cell grid such that each domino occupies exactly $2$ cells of the grid and all cells of the grid are covered. How many $8 \times 8$ domino-tilings are there? If your estimate is $E$ and the actual value is $A$, your score for this problem will be $$\max \, \left( 0, \left \lfloor 15-10 \cdot \left|\log_{10} \left( \frac{A}{E} \right) \right| \right \rfloor \right).$$
PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h3166016p28809598]here [/url] and 5-8 [url=https://artofproblemsolving.com/community/c3h3166019p28809679]here[/url].Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2012 Online Math Open Problems, 5
Congruent circles $\Gamma_1$ and $\Gamma_2$ have radius $2012,$ and the center of $\Gamma_1$ lies on $\Gamma_2.$ Suppose that $\Gamma_1$ and $\Gamma_2$ intersect at $A$ and $B$. The line through $A$ perpendicular to $AB$ meets $\Gamma_1$ and $\Gamma_2$ again at $C$ and $D$, respectively. Find the length of $CD$.
[i]Author: Ray Li[/i]
Cono Sur Shortlist - geometry, 2009.G1.6
Sebastian has a certain number of rectangles with areas that sum up to 3 and with side lengths all less than or equal to $1$. Demonstrate that with each of these rectangles it is possible to cover a square with side $1$ in such a way that the sides of the rectangles are parallel to the sides of the square.
[b]Note:[/b] The rectangles can overlap and they can protrude over the sides of the square.
2013 Brazil Team Selection Test, 3
Let $ABC$ be a triangle with $AB \neq AC$ and circumcenter $O$. The bisector of $\angle BAC$ intersects $BC$ at $D$. Let $E$ be the reflection of $D$ with respect to the midpoint of $BC$. The lines through $D$ and $E$ perpendicular to $BC$ intersect the lines $AO$ and $AD$ at $X$ and $Y$ respectively. Prove that the quadrilateral $BXCY$ is cyclic.
1993 Moldova Team Selection Test, 8
Inside the parallelogram $ABCD$ points $M, N, K$ and $L{}$ are on sides $AB, BC, CD{}$ and $DA$, respectively. Let $O_1, O_2, O_3$ and $O_4$ be the circumcenters of triangles repesctively $MBN, NCK, KDL$ and $LAM{}$. Prove that the quadrilateral $O_1O_2O_3O_4$ is a parallelogram.
2000 Belarus Team Selection Test, 8.1
The diagonals of a convex quadrilateral $ABCD$ with $AB = AC = BD$ intersect at $P$, and $O$ and $I$ are the circumcenter and incenter of $\vartriangle ABP$, respectively. Prove that if $O \ne I$ then $OI$ and $CD$ are perpendicular