This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

1996 Turkey Team Selection Test, 2

In a parallelogram $ABCD$ with $\angle A < 90$, the circle with diameter $AC$ intersects the lines $CB$ and $CD$ again at $E$ and $F$ , and the tangent to this circle at $A$ meets the line $BD$ at $P$ . Prove that the points $P$, $E$, $F$ are collinear.

2017 Iran Team Selection Test, 4

There are $6$ points on the plane such that no three of them are collinear. It's known that between every $4$ points of them, there exists a point that it's power with respect to the circle passing through the other three points is a constant value $k$.(Power of a point in the interior of a circle has a negative value.) Prove that $k=0$ and all $6$ points lie on a circle. [i]Proposed by Morteza Saghafian[/I]

2009 Singapore Junior Math Olympiad, 1

Tags: geometry , angle
In $\vartriangle ABC, \angle A= 2 \angle B$. Let $a,b,c$ be the lengths of its sides $BC,CA,AB$, respectively. Prove that $a^2 = b(b + c)$.

2013 Saudi Arabia IMO TST, 2

Let $ABC$ be an acute triangle, and let $AA_1, BB_1$, and $CC_1$ be its altitudes. Segments $AA_1$ and $B_1C_1$ meet at point $K$. The perpendicular bisector of segment $A_1K$ intersects sides $AB$ and $AC$ at $L$ and $M$, respectively. Prove that points $A,A_1, L$, and $M$ lie on a circle.

2005 JHMT, 6

Tags: geometry
Line $DE$ cuts through triangle $ABC$, with $DF$ parallel to $BE$. Given that $BD =DF = 10$ and $AD = BE = 25$, find $BC$. [img]https://cdn.artofproblemsolving.com/attachments/0/e/d6e3d7c1f9bd15f4573ccd5fc67c190b9cf7e9.png[/img]

1976 All Soviet Union Mathematical Olympiad, 227

There are $n$ rectangles drawn on the rectangular sheet of paper with the sides of the rectangles parallel to the sheet sides. The rectangles do not have pairwise common interior points. Prove that after cutting out the rectangles the sheet will split into not more than $n+1$ part.

2015 IMO Shortlist, G8

A [i]triangulation[/i] of a convex polygon $\Pi$ is a partitioning of $\Pi$ into triangles by diagonals having no common points other than the vertices of the polygon. We say that a triangulation is a [i]Thaiangulation[/i] if all triangles in it have the same area. Prove that any two different Thaiangulations of a convex polygon $\Pi$ differ by exactly two triangles. (In other words, prove that it is possible to replace one pair of triangles in the first Thaiangulation with a different pair of triangles so as to obtain the second Thaiangulation.) [i]Proposed by Bulgaria[/i]

2018 ABMC, Speed

[i]25 problems for 30 minutes[/i] [b]p1.[/b] Somya has a football game $4$ days from today. If the day before yesterday was Wednesday, what day of the week is the game? [b]p2.[/b] Sammy writes the following equation: $$\frac{2 + 2}{8 + 8}=\frac{x}{8}.$$ What is the value of $x$ in Sammy's equation? [b]p3.[/b] On $\pi$ day, Peter buys $7$ pies. The pies costed $\$3$, $\$1$, $\$4$, $\$1$, $\$5$, $\$9$, and $\$2$. What was the median price of Peter's $7$ pies in dollars? [b]p4.[/b] Antonio draws a line on the coordinate plane. If the line passes through the points ($1, 3$) and ($-1,-1$), what is slope of the line? [b]p5.[/b] Professor Varun has $25$ students in his science class. He divides his students into the maximum possible number of groups of $4$, but $x$ students are left over. What is $x$? [b]p6.[/b] Evaluate the following: $$4 \times 5 \div 6 \times 3 \div \frac47$$ [b]p7.[/b] Jonny, a geometry expert, draws many rectangles with perimeter $16$. What is the area of the largest possible rectangle he can draw? [b]p8.[/b] David always drives at $60$ miles per hour. Today, he begins his trip to MIT by driving $60$ miles. He stops to take a $20$ minute lunch break and then drives for another $30$ miles to reach the campus. What is the total time in minutes he spends getting to MIT? [b]p9.[/b] Richard has $5$ hats: blue, green, orange, red, and purple. Richard also has 5 shirts of the same colors: blue, green, orange, red, and purple. If Richard needs a shirt and a hat of different colors, how many out ts can he wear? [b]p10.[/b] Poonam has $9$ numbers in her bag: $1, 2, 3, 4, 5, 6, 7, 8, 9$. Eric runs by with the number $36$. How many of Poonam's numbers evenly divide Eric's number? [b]p11.[/b] Serena drives at $45$ miles per hour. If her car runs at $6$ miles per gallon, and each gallon of gas costs $2$ dollars, how many dollars does she spend on gas for a $135$ mile trip? [b]p12.[/b] Grace is thinking of two integers. Emmie observes that the sum of the two numbers is $56$ but the difference of the two numbers is $30$. What is the sum of the squares of Grace's two numbers? [b]p13.[/b] Chang stands at the point ($3,-3$). Fang stands at ($-3, 3$). Wang stands in-between Chang and Fang; Wang is twice as close to Fang as to Chang. What is the ordered pair that Wang stands at? [b]p14.[/b] Nithin has a right triangle. The longest side has length $37$ inches. If one of the shorter sides has length $12$ inches, what is the perimeter of the triangle in inches? [b]p15.[/b] Dora has $2$ red socks, $2$ blue socks, $2$ green socks, $2$ purple socks, $3$ black socks, and $4$ gray socks. After a long snowstorm, her family loses electricity. She picks socks one-by-one from the drawer in the dark. How many socks does she have to pick to guarantee a pair of socks that are the same color? [b]p16.[/b] Justin selects a random positive $2$-digit integer. What is the probability that the sum of the two digits of Justin's number equals $11$? [b]p17.[/b] Eddie correctly computes $1! + 2! + .. + 9! + 10!$. What is the remainder when Eddie's sum is divided by $80$? [b]p18.[/b] $\vartriangle PQR$ is drawn such that the distance from $P$ to $\overline{QR}$ is $3$, the distance from $Q$ to $\overline{PR}$ is $4$, and the distance from $R$ to $\overline{PQ}$ is $5$. The angle bisector of $\angle PQR$ and the angle bisector of $\angle PRQ$ intersect at $I$. What is the distance from $I$ to $\overline{PR}$? [b]p19.[/b] Maxwell graphs the quadrilateral $|x - 2| + |y + 2| = 6$. What is the area of the quadrilateral? [b]p20.[/b] Uncle Gowri hits a speed bump on his way to the hospital. At the hospital, patients who get a rare disease are given the option to choose treatment $A$ or treatment $B$. Treatment $A$ will cure the disease $\frac34$ of the time, but since the treatment is more expensive, only $\frac{8}{25}$ of the patients will choose this treatment. Treatment $B$ will only cure the disease $\frac{1}{2}$ of the time, but since it is much more a ordable, $\frac{17}{25}$ of the patients will end up selecting this treatment. Given that a patient was cured, what is the probability that the patient selected treatment $A$? [b]p21.[/b] In convex quadrilateral $ABCD$, $AC = 28$ and $BD = 15$. Let $P, Q, R, S$ be the midpoints of $AB$, $BC$, $CD$ and $AD$ respectively. Compute $PR^2 + QS^2$. [b]p22.[/b] Charlotte writes the polynomial $p(x) = x^{24} - 6x + 5$. Let its roots be $r_1$, $r_2$, $...$, $r_{24}$. Compute $r^{24}_1 +r^{24}_2 + r^{24}_3 + ... + r^{24}_24$. [b]p23.[/b] In rectangle $ABCD$, $AB = 6$ and $BC = 4$. Let $E$ be a point on $CD$, and let $F$ be the point on $AB$ which lies on the bisector of $\angle BED$. If $FD^2 + EF^2 = 52$, what is the length of $BE$? [b]p24.[/b] In $\vartriangle ABC$, the measure of $\angle A$ is $60^o$ and the measure of $\angle B$ is $45^o$. Let $O$ be the center of the circle that circumscribes $\vartriangle ABC$. Let $I$ be the center of the circle that is inscribed in $\vartriangle ABC$. Finally, let $H$ be the intersection of the $3$ altitudes of the triangle. What is the angle measure of $\angle OIH$ in degrees? [b]p25.[/b] Kaitlyn fully expands the polynomial $(x^2 + x + 1)^{2018}$. How many of the coecients are not divisible by $3$? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2018 Bosnia and Herzegovina EGMO TST, 3

Let $O$ be a circumcenter of acute triangle $ABC$ and let $O_1$ and $O_2$ be circumcenters of triangles $OAB$ and $OAC$, respectively. Circumcircles of triangles $OAB$ and $OAC$ intersect side $BC$ in points $D$ ($D \neq B$) and $E$ ($E \neq C$), respectively. Perpendicular bisector of side $BC$ intersects side $AC$ in point $F$($F \neq A$). Prove that circumcenter of triangle $ADE$ lies on $AC$ iff $F$ lies on line $O_1O_2$

2006 IMO, 1

Let $ABC$ be triangle with incenter $I$. A point $P$ in the interior of the triangle satisfies \[\angle PBA+\angle PCA = \angle PBC+\angle PCB.\] Show that $AP \geq AI$, and that equality holds if and only if $P=I$.

2011 Today's Calculation Of Integral, 740

Let $r$ be a positive constant. If 2 curves $C_1: y=\frac{2x^2}{x^2+1},\ C_2: y=\sqrt{r^2-x^2}$ have each tangent line at their point of intersection and at which their tangent lines are perpendicular each other, then find the area of the figure bounded by $C_1,\ C_2$.

1963 Putnam, A6

Tags: conic , ellipse , geometry
Let $U$ and $V$ be any two distinct points on an ellipse, let $M$ be the midpoint of the chord $UV$, and let $AB$ and $CD$ be any two other chords through $M$. If the line $UV$ meets the line $AC$ in the point $P$ and the line $BD$ in the point $Q$, prove that $M$ is the midpoint of the segment $PQ.$

2008 Harvard-MIT Mathematics Tournament, 27

Cyclic pentagon $ ABCDE$ has a right angle $ \angle{ABC} \equal{} 90^{\circ}$ and side lengths $ AB \equal{} 15$ and $ BC \equal{} 20$. Supposing that $ AB \equal{} DE \equal{} EA$, find $ CD$.

2001 Estonia Team Selection Test, 1

Consider on the coordinate plane all rectangles whose (i) vertices have integer coordinates; (ii) edges are parallel to coordinate axes; (iii) area is $2^k$, where $k = 0,1,2....$ Is it possible to color all points with integer coordinates in two colors so that no such rectangle has all its vertices of the same color?

2014 Switzerland - Final Round, 8

In the acute-angled triangle $ABC$, let $M$ be the midpoint of the atlitude $h_b$ through $B$ and $N$ be the midpoint of the height $h_c$ through $C$. Further let $P$ be the intersection of $AM$ and $h_c$ and $Q$ be the intersection of $AN$ and $h_b$. Show that $M, N, P$ and $Q$ lie on a circle.

1996 All-Russian Olympiad Regional Round, 11.2

Let us call the [i]median [/i] of a system of $2n$ points of a plane a straight line passing through exactly two of them, on both sides of which there are points of this system equally. What is the smallest number of [i]medians [/i] that a system of $2n$ points, no three of which lie on the same line?

1994 Italy TST, 1

Given a circle $\gamma$ and a point $P$ inside it, find the maximum and minimum value of the sum of the lengths of two perpendicular chords of $\gamma$ passing through $P$.

Kyiv City MO Seniors 2003+ geometry, 2014.11.4

In the triangle $ABC$, for which $AC <AB <BC$, on the sides $AB$ and $BC$ the points $K$ and $N$ were chosen, respectively, that $KA = AC = CN$. The lines $AN$ and $CK$ intersect at the point $O$. From the point $O$ held the segment $OM \perp AC $ ($M \in AC$) . Prove that the circles inscribed in triangles $ABM$ and $CBM$ are tangent. (Igor Nagel)

2024 India Regional Mathematical Olympiad, 5

Let $ABCD$ be a cyclic quadrilateral such that $AB \parallel CD$. Let $O$ be the circumcenter of $ABCD$ and $L$ be the point on $AD$ such that $OL$ is perpendicular to $AD$. Prove that \[ OB\cdot(AB+CD) = OL\cdot(AC + BD).\] [i]Proposed by Rijul Saini[/i]

1979 IMO Longlists, 74

Given an equilateral triangle $ABC$ of side $a$ in a plane, let $M$ be a point on the circumcircle of the triangle. Prove that the sum $s = MA^4 +MB^4 +MC^4$ is independent of the position of the point $M$ on the circle, and determine that constant value as a function of $a$.

1956 Moscow Mathematical Olympiad, 320

Tags: acute , angle , geometry
Prove that there are no four points $A, B, C, D$ on a plane such that all triangles $\vartriangle ABC,\vartriangle BCD, \vartriangle CDA, \vartriangle DAB$ are acute ones.

2019 Yasinsky Geometry Olympiad, p3

Let $ABCD$ be an inscribed quadrilateral whose diagonals are connected internally. are perpendicular to each other and intersect at the point $P$. Prove that the line connecting the midpoints of the opposite sides of the quadrilateral $ABCD$ bisects the lines $OP$ ($O$ is the center of the circle circumscribed around quadrilateral $ABCD$). (Alexander Dunyak)

1995 AMC 12/AHSME, 12

Hi guys, I was just reading over old posts that I made last year ( :P ) and saw how much the level of Getting Started became harder. To encourage more people from posting, I decided to start a Problem of the Day. This is how I'll conduct this: 1. In each post (not including this one since it has rules, etc) everyday, I'll post the problem. I may post another thread after it to give hints though. 2. Level of problem.. This is VERY important. All problems in this thread will be all AHSME or problems similar to this level. No AIME. Some AHSME problems, however, that involve tough insight or skills will not be posted. The chosen problems will be usually ones that everyone can solve after working. Calculators are allowed when you solve problems but it is NOT necessary. 3. Response.. All you have to do is simply solve the problem and post the solution. There is no credit given or taken away if you get the problem wrong. This isn't like other threads where the number of problems you get right or not matters. As for posting, post your solutions here in this thread. Do NOT PM me. Also, here are some more restrictions when posting solutions: A. No single answer post. It doesn't matter if you put hide and say "Answer is ###..." If you don't put explanation, it simply means you cheated off from some other people. I've seen several posts that went like "I know the answer" and simply post the letter. What is the purpose of even posting then? Huh? B. Do NOT go back to the previous problem(s). This causes too much confusion. C. You're FREE to give hints and post different idea, way or answer in some cases in problems. If you see someone did wrong or you don't understand what they did, post here. That's what this thread is for. 4. Main purpose.. This is for anyone who visits this forum to enjoy math. I rememeber when I first came into this forum, I was poor at math compared to other people. But I kindly got help from many people such as JBL, joml88, tokenadult, and many other people that would take too much time to type. Perhaps without them, I wouldn't be even a moderator in this forum now. This site clearly made me to enjoy math more and more and I'd like to do the same thing. That's about the rule.. Have fun problem solving! Next post will contain the Day 1 Problem. You can post the solutions until I post one. :D

2018 Poland - Second Round, 4

Let $ABCD$ be a trapezoid with bases $AB$ and $CD$. Circle of diameter $BC$ is tangent to line $AD$. Prove, that circle of diameter $AD$ is tangent to line $BC$.

2009 Austria Beginners' Competition, 4

The center $M$ of the square $ABCD$ is reflected wrt $C$. This gives point $E$. The intersection of the circumcircle of the triangle $BDE$ with the line $AM$ is denoted by $S$. Show that $S$ bisects the distance $AM$. (W. Janous, WRG Ursulinen, Innsbruck)