Found problems: 25757
2010 German National Olympiad, 1
Given two circles $k$ and $l$ which intersect at two points. One of their common tangents touches $k$ at point $K$, while the other common tangent touches $l$ at $L.$ Let $A$ and $B$ be the intersections of the line $KL$ with the circles $k$ and $l$, respectively. Prove that $\overline{AK} = \overline{BL}.$
2014 PUMaC Geometry B, 4
Let $O$ be the circumcenter of triangle $ABC$ with circumradius $15$. Let $G$ be the centroid of $ABC$ and let $M$ be the midpoint of $BC$. If $BC=18$ and $\angle MOA=150^\circ$, find the area of $OMG$.
2014 Bulgaria National Olympiad, 2
Every cell of a $m \times n$ chess board, $m\ge 2,n\ge 2$, is colored with one of four possible colors, e.g white, green, red, blue. We call such coloring good if the four cells of any $2\times 2$ square of the chessboard are colored with pairwise different colors. Determine the number of all good colorings of the chess board.
[i]Proposed by N. Beluhov[/i]
Geometry Mathley 2011-12, 6.2
Let $ABC$ be an acute triangle, and its altitudes $AX,BY,CZ$ concurrent at $H$. Construct circles $(K_a), (K_b), (K_c)$ circumscribing the triangles $AY Z, BZX, CXY$ . Construct a circle $(K)$ that is internally tangent to all the three circles $(Ka), (K_b), (K_c)$. Prove that $(K)$ is tangent to the circumcircle $(O)$ of the triangle $ABC$.
Đỗ Thanh Sơn
2008 AMC 12/AHSME, 8
What is the volume of a cube whose surface area is twice that of a cube with volume $ 1$?
$ \textbf{(A)}\ \sqrt{2} \qquad
\textbf{(B)}\ 2 \qquad
\textbf{(C)}\ 2\sqrt{2} \qquad
\textbf{(D)}\ 4 \qquad
\textbf{(E)}\ 8$
2006 Purple Comet Problems, 9
How many rectangles are there in the diagram below such that the sum of the numbers within the rectangle is a multiple of 7?
[asy]
int n;
n=0;
for (int i=0; i<=7;++i)
{
draw((i,0)--(i,7));
draw((0,i)--(7,i));
for (int a=0; a<=7;++a)
{
if ((a != 7)&&(i != 7))
{
n=n+1;
label((string) n,(a,i),(1.5,2));
}
}
}
[/asy]
2022 Novosibirsk Oral Olympiad in Geometry, 2
Faith has four different integer length segments. It turned out that any three of them can form a triangle. What is the smallest total length of this set of segments?
2014 Polish MO Finals, 3
A tetrahedron $ABCD$ with acute-angled faces is inscribed in a sphere with center $O$. A line passing through $O$ perpendicular to plane $ABC$ crosses the sphere at point $D'$ that lies on the opposide side of plane $ABC$ than point $D$. Line $DD'$ crosses plane $ABC$ in point $P$ that lies inside the triangle $ABC$. Prove, that if $\angle APB=2\angle ACB$, then $\angle ADD'=\angle BDD'$.
2019 Romanian Master of Mathematics Shortlist, G5
A quadrilateral $ABCD$ is circumscribed about a circle with center $I$. A point $P \ne I$ is chosen inside $ABCD$ so that the triangles $PAB, PBC, PCD,$ and $PDA$ have equal perimeters. A circle $\Gamma$ centered at $P$ meets the rays $PA, PB, PC$, and $PD$ at $A_1, B_1, C_1$, and $D_1$, respectively. Prove that the lines $PI, A_1C_1$, and $B_1D_1$ are concurrent.
Ankan Bhattacharya, USA
2015 Saudi Arabia Pre-TST, 1.1
Let $ABC$ be a triangle and $D$ a point on the side $BC$. Point $E$ is the symmetric of $D$ with respect to $AB$. Point $F$ is the symmetric of $E$ with respect to $AC$. Point $P$ is the intersection of line $DF$ with line $AC$. Prove that the quadrilateral $AEDP$ is cyclic.
(Malik Talbi)
Ukraine Correspondence MO - geometry, 2013.9
Let $E$ be the point of intersection of the diagonals of the cyclic quadrilateral $ABCD$, and let $K, L, M$ and $N$ be the midpoints of the sides $AB, BC, CD$ and $DA$, respectively. Prove that the radii of the circles circumscribed around the triangles $KLE$ and $MNE$ are equal.
2001 AMC 12/AHSME, 22
In rectangle $ ABCD$, points $ F$ and $ G$ lie on $ \overline{AB}$ so that $ AF \equal{} FG \equal{} GB$ and $ E$ is the midpoint of $ \overline{DC}$. Also, $ \overline{AC}$ intersects $ \overline{EF}$ at $ H$ and $ \overline{EG}$ at $ J$. The area of the rectangle $ ABCD$ is $ 70$. Find the area of triangle $ EHJ$.
[asy]
size(180);
pair A, B, C, D, E, F, G, H, J;
A = origin;
real length = 6;
real width = 3.5;
B = length*dir(0);
C = (length, width);
D = width*dir(90);
F = length/3*dir(0);
G = 2*length/3*dir(0);
E = (length/2, width);
H = extension(A, C, E, F);
J = extension(A, C, E, G);
draw(A--B--C--D--cycle);
draw(G--E--F);
draw(A--C);
label("$A$", A, dir(180));
label("$D$", D, dir(180));
label("$B$", B, dir(0));
label("$C$", C, dir(0));
label("$F$", F, dir(270));
label("$E$", E, dir(90));
label("$G$", G, dir(270));
label("$H$", H, dir(140));
label("$J$", J, dir(340));
[/asy]
$ \displaystyle \textbf{(A)} \ \frac {5}{2} \qquad \textbf{(B)} \ \frac {35}{12} \qquad \textbf{(C)} \ 3 \qquad \textbf{(D)} \ \frac {7}{2} \qquad \textbf{(E)} \ \frac {35}{8}$
2002 Portugal MO, 2
Consider five spheres with radius $10$ cm . Four of these spheres are arranged on a horizontal table so that its centers form a $20$ cm square and the fifth sphere is placed on them so that it touches the other four. What is the distance between center of this fifth sphere and the table?
2014 Sharygin Geometry Olympiad, 1
The vertices and the circumcenter of an isosceles triangle lie on four different sides of a square. Find the angles of this triangle.
(I. Bogdanov, B. Frenkin)
2010 Junior Balkan Team Selection Tests - Romania, 2
Let $ABCD$ be a convex quadrilateral with $\angle BCD= 120^o, \angle {CBA} = 45^o, \angle {CBD} = 15^o$ and $\angle {CAB} = 90^o$. Show that $AB = AD$.
MMATHS Mathathon Rounds, 2021
[u]Round 1 [/u]
[b]p1.[/b] Ben the bear has an algorithm he runs on positive integers- each second, if the integer is even, he divides it by $2$, and if the integer is odd, he adds $1$. The algorithm terminates after he reaches $1$. What is the least positive integer n such that Ben's algorithm performed on n will terminate after seven seconds? (For example, if Ben performed his algorithm on $3$, the algorithm would terminate after $3$ seconds: $3 \to 4 \to 2 \to 1$.)
[b]p2.[/b] Suppose that a rectangle $R$ has length $p$ and width $q$, for prime integers $p$ and $q$. Rectangle $S$ has length $p + 1$ and width $q + 1$. The absolute difference in area between $S$ and $R$ is $21$. Find the sum of all possible values of $p$.
[b]p3.[/b] Owen the origamian takes a rectangular $12 \times 16$ sheet of paper and folds it in half, along the diagonal, to form a shape. Find the area of this shape.
[u]Round 2[/u]
[b]p4.[/b] How many subsets of the set $\{G, O, Y, A, L, E\}$ contain the same number of consonants as vowels? (Assume that $Y$ is a consonant and not a vowel.)
[b]p5.[/b] Suppose that trapezoid $ABCD$ satisfies $AB = BC = 5$, $CD = 12$, and $\angle ABC = \angle BCD = 90^o$. Let $AC$ and $BD$ intersect at $E$. The area of triangle $BEC$ can be expressed as $\frac{a}{b}$, for positive integers $a$ and $b$ with $gcd(a, b) = 1$. Find $a + b$.
[b]p6.[/b] Find the largest integer $n$ for which $\frac{101^n + 103^n}{101^{n-1} + 103^{n-1}}$ is an integer.
[u]Round 3[/u]
[b]p7.[/b] For each positive integer n between $1$ and $1000$ (inclusive), Ben writes down a list of $n$'s factors, and then computes the median of that list. He notices that for some $n$, that median is actually a factor of $n$. Find the largest $n$ for which this is true.
[b]p8.[/b] ([color=#f00]voided[/color]) Suppose triangle $ABC$ has $AB = 9$, $BC = 10$, and $CA = 17$. Let $x$ be the maximal possible area of a rectangle inscribed in $ABC$, such that two of its vertices lie on one side and the other two vertices lie on the other two sides, respectively. There exist three rectangles $R_1$, $R_2$, and $R_3$ such that each has an area of $x$. Find the area of the smallest region containing the set of points that lie in at least two of the rectangles $R_1$, $R_2$, and $R_3$.
[b]p9.[/b] Let $a, b,$ and $c$ be the three smallest distinct positive values of $\theta$ satisfying $$\cos \theta + \cos 3\theta + ... + \cos 2021\theta = \sin \theta+ \sin 3 \theta+ ... + \sin 2021\theta. $$
What is $\frac{4044}{\pi}(a + b + c)$?
[color=#f00]Problem 8 is voided. [/color]
PS. You should use hide for answers.Rounds 4-5 have been posted [url=https://artofproblemsolving.com/community/c4h3131422p28368457]here [/url] and 6-7 [url=https://artofproblemsolving.com/community/c4h3131434p28368604]here [/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1953 Moscow Mathematical Olympiad, 242
Let $A$ be a vertex of a regular star-shaped pentagon, the angle at $A$ being less than $180^o$ and the broken line $AA_1BB_1CC_1DD_1EE_1$ being its contour. Lines $AB$ and $DE$ meet at $F$. Prove that polygon $ABB_1CC_1DED_1$ has the same area as the quadrilateral $AD_1EF$.
Note: A regular star pentagon is a figure formed along the diagonals of a regular pentagon.
2023 CCA Math Bonanza, T2
How many ways are there to fill an $8\times8\times8$ cube with $1\times1\times8$ sticks? Rotations and reflections are considered distinct.
[i]Team #2[/i]
2019 Saudi Arabia IMO TST, 3
Let $ABC$ be an acute nonisosceles triangle with incenter $I$ and $(d)$ is an arbitrary line tangent to $(I)$ at $K$. The lines passes through $I$, perpendicular to $IA, IB, IC$ cut $(d)$ at $A_1, B_1,C_1$ respectively. Suppose that $(d)$ cuts $BC, CA, AB$ at $M,N, P$ respectively. The lines through $M,N,P$ and respectively parallel to the internal bisectors of $A, B, C$ in triangle $ABC$ meet each other to define a triange $XYZ$. Prove that three lines $AA_1, BB_1, CC_1$ are concurrent and $IK$ is tangent to the circle $(XY Z)$
2022 Taiwan TST Round 2, 5
Let $ABCDE$ be a pentagon inscribed in a circle $\Omega$. A line parallel to the segment $BC$ intersects $AB$ and $AC$ at points $S$ and $T$, respectively. Let $X$ be the intersection of the line $BE$ and $DS$, and $Y$ be the intersection of the line $CE$ and $DT$.
Prove that, if the line $AD$ is tangent to the circle $\odot(DXY)$, then the line $AE$ is tangent to the circle $\odot(EXY)$.
[i]Proposed by ltf0501.[/i]
1966 IMO Longlists, 1
Given $n>3$ points in the plane such that no three of the points are collinear. Does there exist a circle passing through (at least) $3$ of the given points and not containing any other of the $n$ points in its interior ?
2007 Oral Moscow Geometry Olympiad, 3
Construct a parallelogram $ABCD$, if three points are marked on the plane: the midpoints of its altitudes $BH$ and $BP$ and the midpoint of the side $AD$.
2001 Federal Math Competition of S&M, Problem 1
Let $ABCD$ and $A_1B_1C_1D_1$ be convex quadrangles in a plane, such that $AB=A_1B_1$, $BC=B_1C_1$, $CD=C_1D_1$ and $DA=D_1A_1$. Given that diagonals $AC$ and $BD$ are perpendicular to each other, prove that the same holds for diagonals $A_1C_1$ and $B_1D_1$.
2016 Saudi Arabia GMO TST, 1
Let $ABC$ be an acute, non-isosceles triangle which is inscribed in a circle $(O)$. A point $I$ belongs to the segment $BC$. Denote by $H$ and $K$ the projections of $I$ on $AB$ and $AC$, respectively. Suppose that the line $HK$ intersects $(O)$ at $M, N$ ($H$ is between $M, K$ and $K$ is between $H, N$). Prove the following assertions:
a) If $A$ is the center of the circle $(IMN)$, then $BC$ is tangent to $(IMN)$.
b) If $I$ is the midpoint of $BC$, then $BC$ is equal to $4$ times of the distance between the centers of two circles $(ABK)$ and $(ACH)$.
2023 Junior Balkan Team Selection Tests - Romania, P4
Given is a cube $3 \times 3 \times 3$ with $27$ unit cubes. In each such cube a positive integer is written. Call a $\textit {strip}$ a block $1 \times 1 \times 3$ of $3$ cubes. The numbers are written so that for each cube, its number is the sum of three other numbers, one from each of the three strips it is in. Prove that there are at least $16$ numbers that are at most $60$.