This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2015 Purple Comet Problems, 13

Tags: geometry
The diagram below shows a parallelogram ABCD with $AB = 36$ and $AD = 60$. Diagonal BD is perpendicular to side AB. Points E and F bisect sides AD and BC, respectively. Points G and H are the intersections of BD with AF and CE, respectively. Find the area of quadrilateral EGFH The diagram below shows a parallelogram ABCD with AB = 36 and AD = 60. Diagonal BD is perpendicular to side AB. Points E and F bisect sides AD and BC, respectively. Points G and H are the intersections of BD with AF and CE, respectively. Find the area of quadrilateral EGFH.

1969 IMO Shortlist, 20

$(FRA 3)$ A polygon (not necessarily convex) with vertices in the lattice points of a rectangular grid is given. The area of the polygon is $S.$ If $I$ is the number of lattice points that are strictly in the interior of the polygon and B the number of lattice points on the border of the polygon, find the number $T = 2S- B -2I + 2.$

2016 USAMO, 5

Tags: geometry
An equilateral pentagon $AMNPQ$ is inscribed in triangle $ABC$ such that $M\in\overline{AB}$, $Q\in\overline{AC}$, and $N,P\in\overline{BC}$. Let $S$ be the intersection of $\overleftrightarrow{MN}$ and $\overleftrightarrow{PQ}$. Denote by $\ell$ the angle bisector of $\angle MSQ$. Prove that $\overline{OI}$ is parallel to $\ell$, where $O$ is the circumcenter of triangle $ABC$, and $I$ is the incenter of triangle $ABC$.

2009 Swedish Mathematical Competition, 1

Tags: geometry , square , area
Five square carpets have been bought for a square hall with a side of $6$ m , two with the side $2$ m, one with the side $2.1$ m and two with the side $2.5$ m. Is it possible to place the five carpets so that they do not overlap in any way each other? The edges of the carpets do not have to be parallel to the cradles in the hall.

LMT Guts Rounds, 2013

[u]Round 9[/u] [b]p25.[/b] Define a hilly number to be a number with distinct digits such that when its digits are read from left to right, they strictly increase, then strictly decrease. For example, $483$ and $1230$ are both hilly numbers, but $123$ and $1212$ are not. How many $5$-digit hilly numbers are there? [b]p26.[/b] Triangle ABC has $AB = 4$ and $AC = 6$. Let the intersection of the angle bisector of $\angle BAC$ and $\overline{BC}$ be $D$ and the foot of the perpendicular from C to the angle bisector of $\angle BAC$ be $E$. What is the value of $AD/AE$? [b]p27.[/b] Given that $(7+ 4\sqrt3)^x+ (7-4\sqrt3)^x = 10$, find all possible values of $(7+ 4\sqrt3)^x-(7-4\sqrt3)^x$. [u]Round 10[/u] Note: In this set, the answers for each problem rely on answers to the other problems. [b]p28.[/b] Let X be the answer to question $29$. If $5A + 5B = 5X - 8$ and $A^2 + AB - 2B^2 = 0$, find the sum of all possible values of $A$. [b]p29.[/b] Let $W$ be the answer to question $28$. In isosceles trapezoid $ABCD$ with $\overline{AB} \parallel \overline{CD}$, line segments $ \overline{AC}$ and $ \overline{BD}$ split each other in the ratio $2 : 1$. Given that the length of $BC$ is $W$, what is the greatest possible length of $\overline{AB}$ for which there is only one trapezoid $ABCD$ satisfying the given conditions? [b]p30.[/b] Let $W$ be the answer to question $28$ and $X$ be the answer to question $29$. For what value of $Z$ is $ |Z - X| + |Z - W| - |W + X - Z|$ at a minimum? [u]Round 11[/u] [b]p31.[/b] Peijin wants to draw the horizon of Yellowstone Park, but he forgot what it looked like. He remembers that the horizon was a string of $10$ segments, each one either increasing with slope $1$, remaining flat, or decreasing with slope $1$. Given that the horizon never dipped more than $1$ unit below or rose more than $1$ unit above the starting point and that it returned to the starting elevation, how many possible pictures can Peijin draw? [b]p32.[/b] DNA sequences are long strings of $A, T, C$, and $G$, called base pairs. (e.g. AATGCA is a DNA sequence of 6 base pairs). A DNA sequence is called stunningly nondescript if it contains each of A, T, C, G, in some order, in 4 consecutive base pairs somewhere in the sequence. Find the number of stunningly nondescript DNA sequences of 6 base pairs (the example above is to be included in this count). [b]p33.[/b] Given variables s, t that satisfy $(3 + 2s + 3t)^2 + (7 - 2t)^2 + (5 - 2s - t)^2 = 83$, find the minimum possible value of $(-5 + 2s + 3t) ^2 + (3 - 2t)^2 + (2 - 2s - t)^2$. [u]Round 12[/u] [b]p34.[/b] Let $f(n)$ be the number of powers of 2 with n digits. For how many values of n from $1$ to $2013$ inclusive does $f(n) = 3$? If your answer is N and the actual answer is $C$, then the score you will receive on this problem is $max\{15 - \frac{|N-C|}{26039} , 0\}$, rounded to the nearest integer. [b]p35.[/b] How many total characters are there in the source files for the LMT $2013$ problems? If your answer is $N$ and the actual answer is $C$, then the score you receive on this problem is $max\{15 - \frac{|N - C|}{1337}, 0\}$, rounded to the nearest integer. [b]p36.[/b] Write down two distinct integers between $0$ and $300$, inclusive. Let $S$ be the collection of everyone’s guesses. Let x be the smallest nonnegative difference between one of your guesses and another guess in $S$ (possibly your other guess). Your team will be awarded $min(15, x)$ points. PS. You should use hide for answers.Rounds 1-4 are [url=https://artofproblemsolving.com/community/c3h3134546p28406927]here [/url] and 6-8 [url=https://artofproblemsolving.com/community/c3h3136014p28427163]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2020 BMT Fall, 5

Tags: geometry
Let $A_1 = (0, 0)$, $B_1 = (1, 0)$, $C_1 = (1, 1)$, $D_1 = (0, 1)$. For all $i > 1$, we recursively define $$A_i =\frac{1}{2020} (A_{i-1} + 2019B_{i-1}),B_i =\frac{1}{2020} (B_{i-1} + 2019C_{i-1})$$ $$C_i =\frac{1}{2020} (C_{i-1} + 2019D_{i-1}), D_i =\frac{1}{2020} (D_{i-1} + 2019A_{i-1})$$ where all operations are done coordinate-wise. [img]https://cdn.artofproblemsolving.com/attachments/8/7/9b6161656ed2bc70510286dc8cb75cc5bde6c8.png[/img] If $[A_iB_iC_iD_i]$ denotes the area of $A_iB_iC_iD_i$, there are positive integers $a, b$, and $c$ such that $\sum_{i=1}^{\infty}[A_iB_iC_iD_i] = \frac{a^2b}{c}$, where $b$ is square-free and $c$ is as small as possible. Compute the value of $a + b + c$

1987 IMO Longlists, 61

Let $PQ$ be a line segment of constant length $\lambda$ taken on the side $BC$ of a triangle $ABC$ with the order $B,P,Q,C$, and let the lines through $P$ and $Q$ parallel to the lateral sides meet $AC$ at $P_1$ and $Q_1$ and $AB$ at $P_2$ and $Q_2$ respectively. Prove that the sum of the areas of the trapezoids $PQQ_1P_1$ and $PQQ_2P_2$ is independent of the position of $PQ$ on $BC.$

2023 Thailand Online MO, 6

Tags: geometry
Let $ABC$ be a triangle. Construct point $X$ such that $BX=BA$ and $X$ and $C$ lies on the same side of line $AB$. Construct point $Y$ such that $CY=CA$ and $Y$ and $B$ lies on different sides of line $AC$. Suppose that triangle $BAX$ and triangle $CAY$ are similar, prove that the circumcenter of triangle $AXY$ lies on the circumcircle of triangle $ABC$.

2003 AMC 8, 9

$\textbf{Bake Sale}$ Four friends, Art, Roger, Paul and Trisha, bake cookies, and all cookies have the same thickness. The shapes of the cookies di ffer, as shown. $\circ$ Art's cookies are trapezoids: [asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8)); draw(origin--(5,0)--(5,3)--(2,3)--cycle); draw(rightanglemark((5,3), (5,0), origin)); label("5 in", (2.5,0), S); label("3 in", (5,1.5), E); label("3 in", (3.5,3), N);[/asy] $\circ$ Roger's cookies are rectangles: [asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8)); draw(origin--(4,0)--(4,2)--(0,2)--cycle); draw(rightanglemark((4,2), (4,0), origin)); draw(rightanglemark((0,2), origin, (4,0))); label("4 in", (2,0), S); label("2 in", (4,1), E);[/asy] $\circ$ Paul's cookies are parallelograms: [asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8)); draw(origin--(3,0)--(2.5,2)--(-0.5,2)--cycle); draw((2.5,2)--(2.5,0), dashed); draw(rightanglemark((2.5,2),(2.5,0), origin)); label("3 in", (1.5,0), S); label("2 in", (2.5,1), W);[/asy] $\circ$ Trisha's cookies are triangles: [asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8)); draw(origin--(3,0)--(3,4)--cycle); draw(rightanglemark((3,4),(3,0), origin)); label("3 in", (1.5,0), S); label("4 in", (3,2), E);[/asy] Each friend uses the same amount of dough, and Art makes exactly 12 cookies. Art's cookies sell for 60 cents each. To earn the same amount from a single batch, how much should one of Roger's cookies cost in cents? $ \textbf{(A)}\ 18\qquad\textbf{(B)}\ 25\qquad\textbf{(C)}\ 40\qquad\textbf{(D)}\ 75\qquad\textbf{(E)}\ 90$

2008 China Team Selection Test, 3

Determine the greatest positive integer $ n$ such that in three-dimensional space, there exist n points $ P_{1},P_{2},\cdots,P_{n},$ among $ n$ points no three points are collinear, and for arbitary $ 1\leq i < j < k\leq n$, $ P_{i}P_{j}P_{k}$ isn't obtuse triangle.

2004 239 Open Mathematical Olympiad, 8

Given a triangle $ABC$. A point $X$ is chosen on a side $AC$. Some circle passes through $X$, touches the side $AC$ and intersects the circumcircle of triangle $ABC$ in points $M$ and $N$ such that the segment $MN$ bisects $BX$ and intersects sides $AB$ and $BC$ in points $P$ and $Q$. Prove that the circumcircle of triangle $PBQ$ passes through a fixed point different from $B$. [b]proposed by Sergej Berlov[/b]

2005 Pan African, 3

Tags: geometry
Let $ABC$ be a triangle and let $P$ be a point on one of the sides of $ABC$. Construct a line passing through $P$ that divides triangle $ABC$ into two parts of equal area.

EMCC Accuracy Rounds, 2023

[b]p1.[/b] Minseo writes all of the divisors of $1,000,000$ on the whiteboard. She then erases all of the numbers which have the digit $0$ in their decimal representation. How many numbers are left? [b]p2.[/b] $n < 100$ is an odd integer and can be expressed as $3k - 2$ and $5m + 1$ for positive integers $k$ and $m$. Find the sum of all possible values of $n$. [b]p3.[/b] Mr. Pascal is a math teacher who has the license plate $SQUARE$. However, at night, a naughty student scrambles Mr. Pascal’s license plate to $UQRSEA$. The math teacher luckily has an unscrambler that is able to move license plate letters. The unscrambler swaps the positions of any two adjacent letters. What is the minimum number of times Mr. Pascal must use the unscrambler to restore his original license plate? [b]p4.[/b] Find the number of distinct real numbers $x$ which satisfy $x^2 + 4 \lfloor x \rfloor + 4 = 0$. [b]p5.[/b] All four faces of tetrahedron $ABCD$ are acute. The distances from point $D$ to $\overline{BC}$, $\overline{CA}$ and $\overline{AB}$ are all $7$, and the distance from point $D$ to face $ABC$ is $5$. Given that the volume of tetrahedron $ABCD$ is $60$, find the surface area of tetrahedron $ABCD$. [b]p6.[/b] Forrest has a rectangular piece of paper with a width of $5$ inches and a height of $3$ inches. He wants to cut the paper into five rectangular pieces, each of which has a width of $1$ inch and a distinct integer height between $1$ and $5$ inches, inclusive. How many ways can he do so? (One possible way is shown below.) [img]https://cdn.artofproblemsolving.com/attachments/7/3/205afe28276f9df1c6bcb45fff6313c6c7250f.png[/img] [b]p7.[/b] In convex quadrilateral $ABCD$, $AB = CD = 5$, $BC = 4$ and $AD = 8$. If diagonal $\overline{AC}$ bisects $\angle DAB$, find the area of quadrilateral $ABCD$. [b]p8.[/b] Let $x$ and $y$ be real numbers such that $$x + y = x^3 + y^3 + \frac34 = \frac{1}{8xy}.$$ Find the value of $x + y$. [b]p9.[/b] Four blue squares and four red parallelograms are joined edge-to-edge alternately to form a ring of quadrilateral as shown. The areas of three of the red parallelograms are shown. Find the area of the fourth red parallelogram. [img]https://cdn.artofproblemsolving.com/attachments/9/c/911a8d53604f639e2f9bd72b59c7f50e43e258.png[/img] [b]p10.[/b] Define $f(x, n) =\sum_{d|n}\frac{x^n-1}{x^d-1}$ . For how many integers $n$ between $1$ and $2023$ inclusive is $f(3, n)$ an odd integer? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2016 Oral Moscow Geometry Olympiad, 1

Angles are equal in a hexagon, three main diagonals are equal and the other six diagonals are also equal. Is it true that it has equal sides?

2007 All-Russian Olympiad Regional Round, 9.1

Pete chooses $ 1004$ monic quadratic polynomial $ f_{1},\cdots,f_{1004}$, such that each integer from $ 0$ to $ 2007$ is a root of at least one of them. Vasya considers all equations of the form $ f_{i}\equal{}f_{j}(i\not \equal{}j)$ and computes their roots; for each such root , Pete has to pay to Vasya $ 1$ ruble . Find the least possible value of Vasya's income.

MOAA Gunga Bowls, 2019

[u]Set 6[/u] [b]p16.[/b] Let $n! = n \times (n - 1) \times ... \times 2 \times 1$. Find the maximum positive integer value of $x$ such that the quotient $\frac{160!}{160^x}$ is an integer. [b]p17.[/b] Let $\vartriangle OAB$ be a triangle with $\angle OAB = 90^o$ . Draw points $C, D, E, F, G$ in its plane so that $$\vartriangle OAB \sim \vartriangle OBC \sim \vartriangle OCD \sim \vartriangle ODE \sim \vartriangle OEF \sim \vartriangle OFG,$$ and none of these triangles overlap. If points $O, A, G$ lie on the same line, then let $x$ be the sum of all possible values of $\frac{OG}{OA }$. Then, $x$ can be expressed in the form $m/n$ for relatively prime positive integers $m, n$. Compute $m + n$. [b]p18.[/b] Let $f(x)$ denote the least integer greater than or equal to $x^{\sqrt{x}}$. Compute $f(1)+f(2)+f(3)+f(4)$. [u]Set 7[/u] The Fibonacci sequence $\{F_n\}$ is defined as $F_0 = 0$, $F_1 = 1$ and $F_{n+2} = F_{n+1} + F_n$ for all integers $n \ge 0$. [b]p19.[/b] Find the least odd prime factor of $(F_3)^{20} + (F_4)^{20} + (F_5)^{20}$. [b]p20.[/b] Let $$S = \frac{1}{F_3F_5}+\frac{1}{F_4F_6}+\frac{1}{F_5F_7}+\frac{1}{F_6F_8}+...$$ Compute $420S$. [b]p21.[/b] Consider the number $$Q = 0.000101020305080130210340550890144... ,$$ the decimal created by concatenating every Fibonacci number and placing a 0 right after the decimal point and between each Fibonacci number. Find the greatest integer less than or equal to $\frac{1}{Q}$. [u]Set 8[/u] [b]p22.[/b] In five dimensional hyperspace, consider a hypercube $C_0$ of side length $2$. Around it, circumscribe a hypersphere $S_0$, so all $32$ vertices of $C_0$ are on the surface of $S_0$. Around $S_0$, circumscribe a hypercube $C_1$, so that $S_0$ is tangent to all hyperfaces of $C_1$. Continue in this same fashion for $S_1$, $C_2$, $S_2$, and so on. Find the side length of $C_4$. [b]p23.[/b] Suppose $\vartriangle ABC$ satisfies $AC = 10\sqrt2$, $BC = 15$, $\angle C = 45^o$. Let $D, E, F$ be the feet of the altitudes in $\vartriangle ABC$, and let $U, V , W$ be the points where the incircle of $\vartriangle DEF$ is tangent to the sides of $\vartriangle DEF$. Find the area of $\vartriangle UVW$. [b]p24.[/b] A polynomial $P(x)$ is called spicy if all of its coefficients are nonnegative integers less than $9$. How many spicy polynomials satisfy $P(3) = 2019$? [i]The next set will consist of three estimation problems.[/i] [u]Set 9[/u] Points will be awarded based on the formulae below. Answers are nonnegative integers that may exceed $1,000,000$. [b]p25.[/b] Suppose a circle of radius $20192019$ has area $A$. Let s be the side length of a square with area $A$. Compute the greatest integer less than or equal to $s$. If $n$ is the correct answer, an estimate of $e$ gives $\max \{ 0, \left\lfloor 1030 ( min \{ \frac{n}{e},\frac{e}{n}\}^{18}\right\rfloor -1000 \}$ points. [b]p26.[/b] Given a $50 \times 50$ grid of squares, initially all white, define an operation as picking a square and coloring it and the four squares horizontally or vertically adjacent to it blue, if they exist. If a square is already colored blue, it will remain blue if colored again. What is the minimum number of operations necessary to color the entire grid blue? If $n$ is the correct answer, an estimate of $e$ gives $\left\lfloor \frac{180}{5|n-e|+6}\right\rfloor$ points. [b]p27.[/b] The sphere packing problem asks what percent of space can be filled with equally sized spheres without overlap. In three dimensions, the answer is $\frac{\pi}{3\sqrt2} \approx 74.05\%$ of space (confirmed as recently as $2017!$), so we say that the packing density of spheres in three dimensions is about $0.74$. In fact, mathematicians have found optimal packing densities for certain other dimensions as well, one being eight-dimensional space. Let d be the packing density of eight-dimensional hyperspheres in eightdimensional hyperspace. Compute the greatest integer less than $10^8 \times d$. If $n$ is the correct answer, an estimate of e gives $\max \left\{ \lfloor 30-10^{-5}|n - e|\rfloor, 0 \right\}$ points. PS. You had better use hide for answers. First sets have be posted [url=https://artofproblemsolving.com/community/c4h2777330p24370124]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2019 Moldova Team Selection Test, 10

The circle $\Omega$ with center $O$ is circumscribed to acute triangle $ABC$. Let $P$ be a point on the circumscribed circle of $OBC$, such that $P$ is inside $ABC$ and is different from $B$ and $C$. Bisectors of angles $BPA$ and $CPA$ intersect the sides $AB$ and $AC$ in points $E$ and $F.$ Prove that the incenters of triangles $PEF, PCA$ and $PBA$ are collinear.

Ukrainian From Tasks to Tasks - geometry, 2011.3

Let $O$ be the center of the circumcircle, and $AD$ be the angle bisector of the acute triangle $ABC$. The perpendicular drawn from point $D$ on the line $AO$ ​​intersects the line $AC$ at the point $P$. Prove that $AP = AB$.

2003 Olympic Revenge, 1

Let $ABC$ be a triangle with circumcircle $\Gamma$. $D$ is the midpoint of arc $BC$ (this arc does not contain $A$). $E$ is the common point of $BC$ and the perpendicular bisector of $BD$. $F$ is the common point of $AC$ and the parallel to $AB$ containing $D$. $G$ is the common point of $EF$ and $AB$. $H$ is the common point of $GD$ and $AC$. Show that $GAH$ is isosceles.

1997 Croatia National Olympiad, Problem 1

Tags: geometry , hexagon
In a regular hexagon $ABCDEF$ with center $O$, points $M$ and $N$ are the midpoints of the sides $CD$ and $DE$, and $L$ the intersection point of $AM$ and $BN$. Prove that: (a) $ABL$ and $DMLN$ have equal areas; (b) $\angle ALD=\angle OLN=60^\circ$; (c) $\angle OLD=90^\circ$.

2006 Sharygin Geometry Olympiad, 2

Points $A, B$ move with equal speeds along two equal circles. Prove that the perpendicular bisector of $AB$ passes through a fixed point.

2010 Portugal MO, 2

Tags: geometry
Show that any triangle has two sides whose lengths $a$ and $b$ satisfy $\frac{\sqrt{5}-1}{2}<\frac{a}{b}<\frac{\sqrt{5}+1}{2}$.

2012 Junior Balkan MO, 2

Tags: geometry
Let the circles $k_1$ and $k_2$ intersect at two points $A$ and $B$, and let $t$ be a common tangent of $k_1$ and $k_2$ that touches $k_1$ and $k_2$ at $M$ and $N$ respectively. If $t\perp AM$ and $MN=2AM$, evaluate the angle $NMB$.

2003 Romania National Olympiad, 2

Let be five nonzero complex numbers having the same absolute value and such that zero is equal to their sum, which is equal to the sum of their squares. Prove that the affixes of these numbers in the complex plane form a regular pentagon. [i]Daniel Jinga[/i]

Kharkiv City MO Seniors - geometry, 2015.11.3

In the rectangle $ABCD$, point $M$ is the midpoint of the side $BC$. The points $P$ and $Q$ lie on the diagonal $AC$ such that $\angle DPC = \angle DQM = 90^o$. Prove that $Q$ is the midpoint of the segment $AP$.