This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

1975 Chisinau City MO, 111

Three squares are constructed on the sides of the triangle to the outside. What should be the angles of the triangle so that the six vertices of these squares, other than the vertices of the triangle, lie on the same circle?

2007 ITest, 31

Let $x$ be the length of one side of a triangle and let $y$ be the height to that side. If $x+y=418$, find the maximum possible $\textit{integral value}$ of the area of the triangle.

2009 India National Olympiad, 5

Let $ ABC$ be an acute angled triangle and let $ H$ be its ortho centre. Let $ h_{max}$ denote the largest altitude of the triangle $ ABC$. Prove that: $AH \plus{} BH \plus{} CH\leq2h_{max}$

Kharkiv City MO Seniors - geometry, 2013.10.4

The pentagon $ABCDE$ is inscribed in the circle $\omega$. Let $T$ be the intersection point of the diagonals $BE$ and $AD$. A line is drawn through the point $T$ parallel to $CD$, which intersects $AB$ and $CE$ at points $X$ and $Y$, respectively. Prove that the circumscribed circle of the triangle $AXY$ is tangent to $\omega$.

2019 AMC 12/AHSME, 20

Tags: geometry
Points $A(6,13)$ and $B(12,11)$ lie on circle $\omega$ in the plane. Suppose that the tangent lines to $\omega$ at $A$ and $B$ intersect at a point on the $x$-axis. What is the area of $\omega$? $\textbf{(A) }\frac{83\pi}{8}\qquad\textbf{(B) }\frac{21\pi}{2}\qquad\textbf{(C) } \frac{85\pi}{8}\qquad\textbf{(D) }\frac{43\pi}{4}\qquad\textbf{(E) }\frac{87\pi}{8}$

2002 District Olympiad, 3

Let $ G $ be the center of mass of a triangle $ ABC, $ and the points $ M,N,P $ on the segments $ AB,BC, $ respectively, $ CA $ (excluding the extremities) such that $$ \frac{AM}{MB} =\frac{BN}{NC} =\frac{CP}{PA} . $$ $ G_1,G_2,G_3 $ are the centers of mass of the triangles $ AMP, BMN, $ respectively, $ CNP. $ Pove that: [b]a)[/b] The centers of mas of $ ABC $ and $ G_1G_2G_3 $ are the same. [b]b)[/b] For any planar point $ D, $ the inequality $$ 3\cdot DG< DG_1+DG_2+DG_3<DA+DB+DC $$ holds.

2012 IFYM, Sozopol, 7

The quadrilateral $ABCD$ is such that $AB=AD=1$ and $\angle A=90^\circ$. If $CB=c$, $CA=b$, and $CD=a$, then prove that $(2-a^2-c^2 )^2+(2b^2-a^2-c^2 )^2=4a^2 c^2$ and $(a-c)^2\leq 2b^2\leq (a+c)^2$.

2006 CentroAmerican, 2

Let $\Gamma$ and $\Gamma'$ be two congruent circles centered at $O$ and $O'$, respectively, and let $A$ be one of their two points of intersection. $B$ is a point on $\Gamma$, $C$ is the second point of intersection of $AB$ and $\Gamma'$, and $D$ is a point on $\Gamma'$ such that $OBDO'$ is a parallelogram. Show that the length of $CD$ does not depend on the position of $B$.

1997 Vietnam National Olympiad, 3

In the unit cube, given 75 points, no three of which are collinear. Prove that there exits a triangle whose vertices are among the given points and whose area is not greater than 7/72.

2015 Oral Moscow Geometry Olympiad, 6

In an acute-angled isosceles triangle $ABC$, altitudes $CC_1$ and $BB_1$ intersect the line passing through the vertex $A$ and parallel to the line $BC$, at points $P$ and $Q$. Let $A_0$ be the midpoint of side $BC$, and $AA_1$ the altitude. Lines $A_0C_1$ and $A_0B_1$ intersect line $PQ$ at points $K$ and $L$. Prove that the circles circumscribed around triangles $PQA_1, KLA_0, A_1B_1C_1$ and a circle with a diameter $AA_1$ intersect at one point.

2007 China Western Mathematical Olympiad, 2

Let $ C$ and $ D$ be two intersection points of circle $ O_1$ and circle $ O_2$. A line, passing through $ D$, intersects the circle $ O_1$ and the circle $ O_2$ at the points $ A$ and $ B$ respectively. The points $ P$ and $ Q$ are on circles $ O_1$ and $ O_2$ respectively. The lines $ PD$ and $ AC$ intersect at $ H$, and the lines $ QD$ and $ BC$ intersect at $ M$. Suppose that $ O$ is the circumcenter of the triangle $ ABC$. Prove that $ OD\perp MH$ if and only if $ P,Q,M$ and $ H$ are concyclic.

2018 Czech-Polish-Slovak Junior Match, 2

A convex hexagon $ABCDEF$ is given whose sides $AB$ and $DE$ are parallel. Each of the diagonals $AD, BE, CF$ divides this hexagon into two quadrilaterals of equal perimeters. Show that these three diagonals intersect at one point.

1994 Tournament Of Towns, (416) 4

Tags: geometry , fixed
A point $D$ is placed on the side $ BC$ of the triangle $ABC$. Circles are inscribed in the triangles $ABD$ and $ACD$, their common exterior tangent line (other than $BC$) intersects $AD$ at the point $K$. Prove that the length of $AK$ does not depend on the position of $D$. (An exterior tangent of two circles is one which is tangent to both circles but does not pass between them.) (I Sharygin)

2002 South africa National Olympiad, 5

In acute-angled triangle $ABC$, a semicircle with radius $r_a$ is constructed with its base on $BC$ and tangent to the other two sides. $r_b$ and $r_c$ are defined similarly. $r$ is the radius of the incircle of $ABC$. Show that \[ \frac{2}{r} = \frac{1}{r_a} + \frac{1}{r_b} + \frac{1}{r_c}. \]

2010 Saint Petersburg Mathematical Olympiad, 3

Tags: geometry
$M,N$ are midpoints of $AB$ and $CD$ for convex quadrilateral $ABCD$. Points $X$ and $Y$ are on $ AD$ and $BC$ and $XD=3AX,YC=3BY$. $\angle MXA=\angle MYB = 90$. Prove that $\angle XMN=\angle ABC$

MathLinks Contest 6th, 1.2

Let $ABCD$ be a rectangle of center $O$ in the plane $\alpha$, and let $V \notin\alpha$ be a point in space such that $V O \perp \alpha$. Let $A' \in (V A)$, $B'\in (V B)$, $C'\in (V C)$, $D'\in (V D)$ be four points, and let $M$ and $N$ be the midpoints of the segments $A'C'$ and $B'D'$. .Prove that $MN \parallel \alpha$ if and only if $V , A', B', C', D'$ all lie on a sphere.

1966 IMO Longlists, 23

Three faces of a tetrahedron are right triangles, while the fourth is not an obtuse triangle. [i](a) [/i]Prove that a necessary and sufficient condition for the fourth face to be a right triangle is that at some vertex exactly two angles are right. [i](b)[/i] Prove that if all the faces are right triangles, then the volume of the tetrahedron equals one -sixth the product of the three smallest edges not belonging to the same face.

2020 IMEO, Problem 1

Tags: geometry
Let $ABC$ be a triangle and $A'$ be the reflection of $A$ about $BC$. Let $P$ and $Q$ be points on $AB$ and $AC$, respectively, such that $PA'=PC$ and $QA'=QB$. Prove that the perpendicular from $A'$ to $PQ$ passes through the circumcenter of $\triangle ABC$. [i]Fedir Yudin[/i]

May Olympiad L2 - geometry, 2000.3

Tags: geometry
Let $S$ be a circle with radius $2$, let $S_1$ be a circle,with radius $1$ and tangent, internally to $S$ in $B$ and let $S_2$ be a circle, with radius $1$ and tangent to $S_1$ in $A$, but $S_2$ isn't tangent to $S$. If $K$ is the point of intersection of the line $AB$ and the circle $S$, prove that $K$ is in the circle $S_2$.

2003 AMC 10, 15

What is the probability that an integer in the set $ \{1,2,3,\ldots,100\}$ is divisible by $ 2$ and not divisible by $ 3$? $ \textbf{(A)}\ \frac{1}{6} \qquad \textbf{(B)}\ \frac{33}{100} \qquad \textbf{(C)}\ \frac{17}{50} \qquad \textbf{(D)}\ \frac{1}{2} \qquad \textbf{(E)}\ \frac{18}{25}$

Denmark (Mohr) - geometry, 2011.2

In the octagon below all sides have the length $1$ and all angles are equal. Determine the distance between the corners $A$ and $B$. [img]https://1.bp.blogspot.com/-i6TAFDvcQ8w/XzXCRhnV_kI/AAAAAAAAMVw/rKrQMfPYYJIaCwl8hhdVHdqO4fIn8O7cwCLcBGAsYHQ/s0/2011%2BMogh%2Bp2.png[/img]

2015 Iran Team Selection Test, 4

Tags: geometry
Let $\triangle ABC$ be an acute triangle. Point $Z$ is on $A$ altitude and points $X$ and $Y$ are on the $B$ and $C$ altitudes out of the triangle respectively, such that: $\angle AYB=\angle BZC=\angle CXA=90$ Prove that $X$,$Y$ and $Z$ are collinear, if and only if the length of the tangent drawn from $A$ to the nine point circle of $\triangle ABC$ is equal with the sum of the lengths of the tangents drawn from $B$ and $C$ to the nine point circle of $\triangle ABC$.

2022 Regional Olympiad of Mexico West, 4

Prove that in all triangles $\vartriangle ABC$ with $\angle A = 2 \angle B$ it holds that, if $D$ is the foot of the perpendicular from $C$ to the perpendicular bisector of $AB$, $\frac{AC}{DC}$ is constant for any value of $\angle B$.

2017 Bosnia Herzegovina Team Selection Test, 1

Incircle of triangle $ ABC$ touches $ AB,AC$ at $ P,Q$. $ BI, CI$ intersect with $ PQ$ at $ K,L$. Prove that circumcircle of $ ILK$ is tangent to incircle of $ ABC$ if and only if $ AB\plus{}AC\equal{}3BC$.

2023 Stanford Mathematics Tournament, 6

Tags: geometry
Let ABC be a triangle and $\omega_1$ its incircle. Let points $D$ and $E$ be on segments $AB$, $AC$ respectively such that $DE$ is parallel to $BC$ and tangent to $\omega_1$ . Now let $\omega_2$ be the incircle of $\vartriangle ADE$ and let points $F$ and $G$ be on segments $AD,$ $AE$ respectively such that F G is parallel to $DE$ and tangent to $\omega_2$. Given that $\omega_2$ is tangent to line $AF$ at point X and line $AG$ at point $Y$ , the radius of $\omega_1$ is $60$, and $$4(AX) = 5(F G) = 4(AY),$$ compute the radius of $\omega_2$.