This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 288

1967 German National Olympiad, 1

In a plane, a square $ABCD$ and a point $P$ located inside it are given. Let a point $ Q$ pass through all sides of the square. Describe the set of all those points $R$ in for which the triangle $PQR$ is equilateral.

1995 Bundeswettbewerb Mathematik, 2

A line $g$ and a point $A$ outside $g$ are given in a plane. A point $P$ moves along $g$. Find the locus of the third vertices of equilateral triangles whose two vertices are $A$ and $P$.

2005 Czech And Slovak Olympiad III A, 4

An acute-angled triangle $AKL$ is given on a plane. Consider all rectangles $ABCD$ circumscribed to triangle $AKL$ such that point $K$ lies on side $BC$ and point $L$ lieson side $CD$. Find the locus of the intersection $S$ of the diagonals $AC$ and $BD$.

1970 Spain Mathematical Olympiad, 6

Given a circle $\gamma$ and two points $A$ and $B$ in its plane. By $B$ passes a variable secant that intersects $\gamma$ at two points $M$ and $N$. Determine the locus of the centers of the circles circumscribed to the triangle $AMN$.

1956 Czech and Slovak Olympiad III A, 4

Let a semicircle $AB$ be given and let $X$ be an inner point of the arc. Consider a point $Y$ on ray $XA$ such that $XY=XB$. Find the locus of all points $Y$ when $X$ moves on the arc $AB$ (excluding the endpoints).

1969 Spain Mathematical Olympiad, 2

Find the locus of the affix $M$, of the complex number $z$, so that it is aligned with the affixes of $i$ and $iz$ .

1969 Czech and Slovak Olympiad III A, 5

Tags: geometry , conic , locus
Two perpendicular lines $p,q$ and a point $A\notin p\cup q$ are given in plane. Find locus of all points $X$ such that \[XA=\sqrt{|Xp|\cdot|Xq|\,},\] where $|Xp|$ denotes the distance of $X$ from $p.$

2018 Bundeswettbewerb Mathematik, 3

Let $T$ be a point on a line segment $AB$ such that $T$ is closer to $B$ than to $A$. Show that for each point $C \ne T$ on the line through $T$ perpendicular to $AB$ there is exactly one point $D$ on the line segment $AC$ with $\angle CBD=\angle BAC$. Moreover, show that the line through $D$ perpendicular to $AC$ intersects the line $AB$ in a point $E$ which is independent of the position of $C$.

1949-56 Chisinau City MO, 31

Find the locus of the points that are the midpoints of the chords of the secant to the given circle and passing through a given point.

1974 Putnam, A5

Tags: geometry , parabola , locus
Consider the two mutually tangent parabolas $y=x^2$ and $y=-x^2$. The upper parabola rolls without slipping around the fixed lower parabola. Find the locus of the focus of the moving parabola.

2006 Bosnia and Herzegovina Team Selection Test, 2

It is given a triangle $\triangle ABC$. Determine the locus of center of rectangle inscribed in triangle $ABC$ such that one side of rectangle lies on side $AB$.

1946 Moscow Mathematical Olympiad, 122

Tags: ratio , area , sum , locus , geometry
On the sides $PQ, QR, RP$ of $\vartriangle PQR$ segments $AB, CD, EF$ are drawn. Given a point $S_0$ inside triangle $\vartriangle PQR$, find the locus of points $S$ for which the sum of the areas of triangles $\vartriangle SAB$, $\vartriangle SCD$ and $\vartriangle SEF$ is equal to the sum of the areas of triangles $\vartriangle S_0AB$, $\vartriangle S_0CD$, $\vartriangle S0EF$. Consider separately the case $$\frac{AB}{PQ }= \frac{CD}{QR} = \frac{EF}{RP}.$$

1988 Mexico National Olympiad, 6

Consider two fixed points $B,C$ on a circle $w$. Find the locus of the incenters of all triangles $ABC$ when point $A$ describes $w$.

1978 IMO Shortlist, 13

We consider a fixed point $P$ in the interior of a fixed sphere$.$ We construct three segments $PA, PB,PC$, perpendicular two by two$,$ with the vertexes $A, B, C$ on the sphere$.$ We consider the vertex $Q$ which is opposite to $P$ in the parallelepiped (with right angles) with $PA, PB, PC$ as edges$.$ Find the locus of the point $Q$ when $A, B, C$ take all the positions compatible with our problem.

2007 Hanoi Open Mathematics Competitions, 8

Let $ABC$ be an equilateral triangle. For a point $M$ inside $\vartriangle ABC$, let $D,E,F$ be the feet of the perpendiculars from $M$ onto $BC,CA,AB$, respectively. Find the locus of all such points $M$ for which $\angle FDE$ is a right angle.

1977 Bulgaria National Olympiad, Problem 4

Tags: locus , geometry
Vertices $A$ and $C$ of the quadrilateral $ABCD$ are fixed points of the circle $k$ and each of the vertices $B$ and $D$ is moving to one of the arcs of $k$ with ends $A$ and $C$ in such a way that $BC=CD$. Let $M$ be the intersection point of $AC$ and $BD$ and $F$ is the center of the circumscribed circle around $\triangle ABM$. Prove that the locus of $F$ is an arc of a circle. [i]J. Tabov[/i]

1987 Mexico National Olympiad, 3

Consider two lines $\ell$ and $\ell ' $ and a fixed point $P$ equidistant from these lines. What is the locus of projections $M$ of $P$ on $AB$, where $A$ is on $\ell $, $B$ on $\ell ' $, and angle $\angle APB$ is right?

2019 Oral Moscow Geometry Olympiad, 5

Given the segment $ PQ$ and a circle . A chord $AB$ moves around the circle, equal to $PQ$. Let $T$ be the intersection point of the perpendicular bisectors of the segments $AP$ and $BQ$. Prove that all points of $T$ thus obtained lie on one line.

1970 Czech and Slovak Olympiad III A, 5

Let a real number $k$ and points $S,A,SA=1$ in plane be given. Denote $A'$ the image of $A$ under rotation by an oriented angle $\varphi$ with respect to center $S$. Similarly, let $A''$ be the image of $A'$ under homothety with the factor $\frac{1}{\cos\varphi-k\sin\varphi}$ with respect to center $S.$ Denote the locus \[\ell=\bigl\{A''\mid\varphi\in(-\pi,\pi],\cos\varphi-k\sin\varphi\neq0\bigr\}.\] Show that $\ell$ is a line containing $A.$

2007 Sharygin Geometry Olympiad, 10

Find the locus of centers of regular triangles such that three given points $A, B, C$ lie respectively on three lines containing sides of the triangle.

2004 Nicolae Păun, 3

[b]a)[/b] Show that the sum of the squares of the minimum distances from a point that is situated on a sphere to the faces of the cube that circumscribe the sphere doesn't depend on the point. [b]b)[/b] Show that the sum of the cubes of the minimum distances from a point that is situated on a sphere to the faces of the cube that circumscribe the sphere doesn't depend on the point. [i]Alexandru Sergiu Alamă[/i]

1966 IMO Shortlist, 17

Let $ABCD$ and $A^{\prime }B^{\prime}C^{\prime }D^{\prime }$ be two arbitrary parallelograms in the space, and let $M,$ $N,$ $P,$ $Q$ be points dividing the segments $AA^{\prime },$ $BB^{\prime },$ $CC^{\prime },$ $DD^{\prime }$ in equal ratios. [b]a.)[/b] Prove that the quadrilateral $MNPQ$ is a parallelogram. [b]b.)[/b] What is the locus of the center of the parallelogram $MNPQ,$ when the point $M$ moves on the segment $AA^{\prime }$ ? (Consecutive vertices of the parallelograms are labelled in alphabetical order.

1986 Tournament Of Towns, (123) 5

Find the locus of the orthocentres (i.e. the point where three altitudes meet) of the triangles inscribed in a given circle . (A. Andjans, Riga)

2005 ISI B.Math Entrance Exam, 7

Let $M$ be a point in the triangle $ABC$ such that \[\text{area}(ABM)=2 \cdot \text{area}(ACM)\] Show that the locus of all such points is a straight line.

1996 Tournament Of Towns, (514) 1

Consider three edges $a, b, c$ of a cube such that no two of these edges lie in one plane. Find the locus of points inside the cube which are equidistant from $a$, $b$ and $c$. (V Proizvolov,)