Found problems: 300
2007 German National Olympiad, 3
We say that two triangles are oriented similarly if they are similar and have the same orientation. Prove that if $ALT, ARM, ORT, $ and $ULM$ are four triangles which are oriented similarly, then $A$ is the midpoint of the line segment $OU.$
Durer Math Competition CD 1st Round - geometry, 2018.C3
In the isosceles triangle $ABC$, $AB = AC$. Let $E$ be on side $AB$ such that $\angle ACE = \angle ECB = 18^o$, and let $D$ be the midpoint of side $CB$. If we know the length of $AD$ is $3$ units, what is the length of $CE$?
Novosibirsk Oral Geo Oly VIII, 2016.4
The two angles of the squares are adjacent, and the extension of the diagonals of one square intersect the diagonal of another square at point $O$ (see figure). Prove that $O$ is the midpoint of $AB$.
[img]https://cdn.artofproblemsolving.com/attachments/7/8/8daaaa55c38e15c4a8ac7492c38707f05475cc.png[/img]
2013 Sharygin Geometry Olympiad, 5
Points $E$ and $F$ lie on the sides $AB$ and $AC$ of a triangle $ABC$. Lines $EF$ and $BC$ meet at point $S$. Let $M$ and $N$ be the midpoints of $BC$ and $EF$, respectively. The line passing through $A$ and parallel to $MN$ meets $BC$ at point $K$. Prove that $\frac{BK}{CK}=\frac{FS}{ES}$ .
.
2018 Yasinsky Geometry Olympiad, 6
Let $O$ and $I$ be the centers of the circumscribed and inscribed circle the acute-angled triangle $ABC$, respectively. It is known that line $OI$ is parallel to the side $BC$ of this triangle. Line $MI$, where $M$ is the midpoint of $BC$, intersects the altitude $AH$ at the point $T$. Find the length of the segment $IT$, if the radius of the circle inscribed in the triangle $ABC$ is equal to $r$.
(Grigory Filippovsky)
2024 Brazil EGMO TST, 3
Let \( ABC \) be an acute scalene triangle with orthocenter \( H \), and consider \( M \) to be the midpoint of side \( BC \). Define \( P \neq A \) as the intersection point of the circle with diameter \( AH \) and the circumcircle of triangle \( ABC \), and let \( Q \) be the intersection of \( AP \) with \( BC \). Let \( G \neq M \) be the intersection of the circumcircle of triangle \( MPQ \) with the circumcircle of triangle \( AHM \). Show that \( G \) lies on the circle that passes through the feet of the altitudes of triangle \( ABC \).
2006 Mexico National Olympiad, 5
Let $ABC$ be an acute triangle , with altitudes $AD,BE$ and $CF$. Circle of diameter $AD$ intersects the sides $AB,AC$ in $M,N$ respevtively. Let $P,Q$ be the intersection points of $AD$ with $EF$ and $MN$ respectively. Show that $Q$ is the midpoint of $PD$.
1989 All Soviet Union Mathematical Olympiad, 501
$ABCD$ has $AB = CD$, but $AB$ not parallel to $CD$, and $AD$ parallel to $BC$. The triangle is $ABC$ is rotated about $C$ to $A'B'C$. Show that the midpoints of $BC, B'C$ and $A'D$ are collinear.
2008 Federal Competition For Advanced Students, P1, 4
In a triangle $ABC$ let $E$ be the midpoint of the side $AC$ and $F$ the midpoint of the side $BC$. Let $G$ be the foot of the perpendicular from $C$ to $ AB$. Show that $\vartriangle EFG$ is isosceles if and only if $\vartriangle ABC$ is isosceles.
2008 Singapore Junior Math Olympiad, 3
In the quadrilateral $PQRS, A, B, C$ and $D$ are the midpoints of the sides $PQ, QR, RS$ and $SP$ respectively, and $M$ is the midpoint of $CD$. Suppose $H$ is the point on the line $AM$ such that $HC = BC$. Prove that $\angle BHM = 90^o$.
1993 Tournament Of Towns, (385) 3
Three angles of a non-convex, non-self-intersecting quadrilateral are equal to $45$ degrees (i.e. the last equals $225$ degrees). Prove that the midpoints of its sides are vertices of a square.
(V Proizvolov)
1976 All Soviet Union Mathematical Olympiad, 226
Given regular $1976$-gon. The midpoints of all the sides and diagonals are marked. What is the greatest number of the marked points lying on one circumference?
2016 Federal Competition For Advanced Students, P2, 2
Let $ABC$ be a triangle. Its incircle meets the sides $BC, CA$ and $AB$ in the points $D, E$ and $F$, respectively. Let $P$ denote the intersection point of $ED$ and the line perpendicular to $EF$ and passing through $F$, and similarly let $Q$ denote the intersection point of $EF$ and the line perpendicular to $ED$ and passing through $D$.
Prove that $B$ is the mid-point of the segment $PQ$.
Proposed by Karl Czakler
2005 Sharygin Geometry Olympiad, 11.1
$A_1, B_1, C_1$ are the midpoints of the sides $BC,CA,BA$ respectively of an equilateral triangle $ABC$. Three parallel lines, passing through $A_1, B_1, C_1$ intersect, respectively, lines $B_1C_1, C_1A_1, A_1B_1$ at points $A_2, B_2, C_2$. Prove that the lines $AA_2, BB_2, CC_2$ intersect at one point lying on the circle circumscribed around the triangle $ABC$.
2016 Saudi Arabia GMO TST, 1
Let $ABC$ be an acute, non-isosceles triangle which is inscribed in a circle $(O)$. A point $I$ belongs to the segment $BC$. Denote by $H$ and $K$ the projections of $I$ on $AB$ and $AC$, respectively. Suppose that the line $HK $ intersects $(O)$ at $M, N$ ($H$ is between $M, K$ and $K$ is between $H, N$). Let $X, Y$ be the centers of the circles $(ABK),(ACH)$ respectively. Prove the
following assertions:
a) If $I$ is the projection of $A$ on $BC$, then $A$ is the center of circle $(IMN)$.
b) If $XY\parallel BC$, then the orthocenter of $XOY$ is the midpoint of $IO$.
2024 Brazil National Olympiad, 2
Let \( ABC \) be a scalene triangle. Let \( E \) and \( F \) be the midpoints of sides \( AC \) and \( AB \), respectively, and let \( D \) be any point on segment \( BC \). The circumcircles of triangles \( BDF \) and \( CDE \) intersect line \( EF \) at points \( K \neq F \), and \( L \neq E \), respectively, and intersect at points \( X \neq D \). The point \( Y \) is on line \( DX \) such that \( AY \) is parallel to \( BC \). Prove that points \( K \), \( L \), \( X \), and \( Y \) lie on the same circle.
2000 Denmark MO - Mohr Contest, 1
The quadrilateral $ABCD$ is a square of sidelength $1$, and the points $E, F, G, H$ are the midpoints of the sides. Determine the area of quadrilateral $PQRS$.
[img]https://1.bp.blogspot.com/--fMGH2lX6Go/XzcDqhgGKfI/AAAAAAAAMXo/x4NATcMDJ2MeUe-O0xBGKZ_B4l_QzROjACLcBGAsYHQ/s0/2000%2BMohr%2Bp1.png[/img]
2003 Singapore Team Selection Test, 2
Three chords $AB, CD$ and $EF$ of a circle intersect at the midpoint $M$ of $AB$. Show that if $CE$ produced and $DF$ produced meet the line $AB$ at the points $P$ and $Q$ respectively, then $M$ is also the midpoint of $PQ$.
2013 Ukraine Team Selection Test, 1
Let $ABC$ be an isosceles triangle $ABC$ with base $BC$ insribed in a circle. The segment $AD$ is the diameter of the circle, and point $P$ lies on the smaller arc $BD$. Line $DP$ intersects rays $AB$ and $AC$ at points $M$ and $N$, and the lines $BP$ and $CP$ intersects the line $AD$ at points $Q$ and $R$. Prove that the midpoint of the segment $MN$ lies on the circumscribed circle of triangle $PQR$.
1990 IMO Longlists, 25
The incenter of the triangle $ ABC$ is $ K.$ The midpoint of $ AB$ is $ C_1$ and that of $ AC$ is $ B_1.$ The lines $ C_1K$ and $ AC$ meet at $ B_2,$ the lines $ B_1K$ and $ AB$ at $ C_2.$ If the areas of the triangles $ AB_2C_2$ and $ ABC$ are equal, what is the measure of angle $ \angle CAB?$
2006 Sharygin Geometry Olympiad, 20
Four points are given $A, B, C, D$. Points $A_1, B_1, C_1,D_1$ are orthocenters of the triangles $BCD, CDA, DAB, ABC$ and $A_2, B_2, C_2,D_2$ are orthocenters of the triangles $B_1C_1D_1, C_1D_1A_1, D_1A_1B_1,A_1B_1C_1$ etc. Prove that the circles passing through the midpoints of the sides of all the triangles intersect at one point.
Ukraine Correspondence MO - geometry, 2013.11
Given a triangle $ABC$. The circle $\omega_1$ passes through the vertex $B$ and touches the side $AC$ at the point $A$, and the circle $\omega_2$ passes through the vertex $C$ and touches the side $AB$ at the point $A$. The circles $\omega_1$ and $\omega_2$ intersect a second time at the point $D$. The line $AD$ intersects the circumcircle of the triangle $ABC$ at point $E$. Prove that $D$ is the midpoint of $AE$..
1983 IMO, 2
Let $A$ be one of the two distinct points of intersection of two unequal coplanar circles $C_1$ and $C_2$ with centers $O_1$ and $O_2$ respectively. One of the common tangents to the circles touches $C_1$ at $P_1$ and $C_2$ at $P_2$, while the other touches $C_1$ at $Q_1$ and $C_2$ at $Q_2$. Let $M_1$ be the midpoint of $P_1Q_1$ and $M_2$ the midpoint of $P_2Q_2$. Prove that $\angle O_1AO_2=\angle M_1AM_2$.
May Olympiad L1 - geometry, 2000.2
Let $ABC$ be a right triangle in $A$ , whose leg measures $1$ cm. The bisector of the angle $BAC$ cuts the hypotenuse in $R$, the perpendicular to $AR$ on $R$ , cuts the side $AB$ at its midpoint. Find the measurement of the side $AB$ .
2016 Czech-Polish-Slovak Junior Match, 5
Let $ABC$ be a triangle with $AB : AC : BC =5:5:6$. Denote by $M$ the midpoint of $BC$ and by $N$ the point on the segment $BC$ such that $BN = 5 \cdot CN$. Prove that the circumcenter of triangle $ABN$ is the midpoint of the segment connecting the incenters of triangles $ABC$ and $ABM$.
Slovakia