This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1679

1957 AMC 12/AHSME, 35

Side $ AC$ of right triangle $ ABC$ is divide into $ 8$ equal parts. Seven line segments parallel to $ BC$ are drawn to $ AB$ from the points of division. If $ BC \equal{} 10$, then the sum of the lengths of the seven line segments: $ \textbf{(A)}\ \text{cannot be found from the given information} \qquad \textbf{(B)}\ \text{is }{33}\qquad \textbf{(C)}\ \text{is }{34}\qquad \textbf{(D)}\ \text{is }{35}\qquad \textbf{(E)}\ \text{is }{45}$

2013 AMC 8, 24

Squares $ABCD$, $EFGH$, and $GHIJ$ are equal in area. Points $C$ and $D$ are the midpoints of sides $IH$ ad $HE$, respectively. What is the ratio of the area of the shaded pentagon $AJICB$ to the sum of the areas of the three squares? [asy] pair A,B,C,D,E,F,G,H,I,J; A = (0.5,2); B = (1.5,2); C = (1.5,1); D = (0.5,1); E = (0,1); F = (0,0); G = (1,0); H = (1,1); I = (2,1); J = (2,0); draw(A--B); draw(C--B); draw(D--A); draw(F--E); draw(I--J); draw(J--F); draw(G--H); draw(A--J); filldraw(A--B--C--I--J--cycle,grey); draw(E--I); dot("$A$", A, NW); dot("$B$", B, NE); dot("$C$", C, NE); dot("$D$", D, NW); dot("$E$", E, NW); dot("$F$", F, SW); dot("$G$", G, S); dot("$H$", H, N); dot("$I$", I, NE); dot("$J$", J, SE);[/asy] $\textbf{(A)}\ \frac14 \qquad \textbf{(B)}\ \frac7{24} \qquad \textbf{(C)}\ \frac13 \qquad \textbf{(D)}\ \frac38 \qquad \textbf{(E)}\ \frac5{12}$

2005 Thailand Mathematical Olympiad, 2

Let $\vartriangle ABC$ be an acute triangle, and let $A'$ and $B'$ be the feet of altitudes from $A$ to $BC$ and from $B$ to $CA$, respectively; the altitudes intersect at $H$. If $BH$ is equal to the circumradius of $\vartriangle ABC$, find $\frac{A'B}{AB}$ .

2010 AMC 10, 2

Four identical squares and one rectangle are placed together to form one large square as shown. The length of the rectangle is how many times as large as its width? [asy]unitsize(8mm); defaultpen(linewidth(.8pt)); draw(scale(4)*unitsquare); draw((0,3)--(4,3)); draw((1,3)--(1,4)); draw((2,3)--(2,4)); draw((3,3)--(3,4));[/asy]$ \textbf{(A)}\ \frac {5}{4} \qquad \textbf{(B)}\ \frac {4}{3} \qquad \textbf{(C)}\ \frac {3}{2} \qquad \textbf{(D)}\ 2 \qquad \textbf{(E)}\ 3$

2006 AMC 8, 16

Problems 14, 15 and 16 involve Mrs. Reed's English assignment. A Novel Assignment The students in Mrs. Reed's English class are reading the same 760-page novel. Three friends, Alice, Bob and Chandra, are in the class. Alice reads a page in 20 seconds, Bob reads a page in 45 seconds and Chandra reads a page in 30 seconds. Before Chandra and Bob start reading, Alice says she would like to team read with them. If they divide the book into three sections so that each reads for the same length of time, how many seconds will each have to read? $ \textbf{(A)}\ 6400 \qquad \textbf{(B)}\ 6600 \qquad \textbf{(C)}\ 6800 \qquad \textbf{(D)}\ 7000 \qquad \textbf{(E)}\ 7200$

2010 AMC 10, 20

Tags: geometry , ratio
Two circles lie outside regular hexagon $ ABCDEF$. The first is tangent to $ \overline{AB}$, and the second is tangent to $ \overline{DE}$. Both are tangent to lines $ BC$ and $ FA$. What is the ratio of the area of the second circle to that of the first circle? $ \textbf{(A)}\ 18\qquad\textbf{(B)}\ 27\qquad\textbf{(C)}\ 36\qquad\textbf{(D)}\ 81\qquad\textbf{(E)}\ 108$

2005 IMO Shortlist, 2

Six points are chosen on the sides of an equilateral triangle $ABC$: $A_1$, $A_2$ on $BC$, $B_1$, $B_2$ on $CA$ and $C_1$, $C_2$ on $AB$, such that they are the vertices of a convex hexagon $A_1A_2B_1B_2C_1C_2$ with equal side lengths. Prove that the lines $A_1B_2$, $B_1C_2$ and $C_1A_2$ are concurrent. [i]Bogdan Enescu, Romania[/i]

2010 Princeton University Math Competition, 5

A cuboctahedron is a solid with 6 square faces and 8 equilateral triangle faces, with each edge adjacent to both a square and a triangle (see picture). Suppose the ratio of the volume of an octahedron to a cuboctahedron with the same side length is $r$. Find $100r^2$. [asy] // dragon96, replacing // [img]http://i.imgur.com/08FbQs.png[/img] size(140); defaultpen(linewidth(.7)); real alpha=10, x=-0.12, y=0.025, r=1/sqrt(3); path hex=rotate(alpha)*polygon(6); pair A = shift(x,y)*(r*dir(330+alpha)), B = shift(x,y)*(r*dir(90+alpha)), C = shift(x,y)*(r*dir(210+alpha)); pair X = (-A.x, -A.y), Y = (-B.x, -B.y), Z = (-C.x, -C.y); int i; pair[] H; for(i=0; i<6; i=i+1) { H[i] = dir(alpha+60*i);} fill(X--Y--Z--cycle, rgb(204,255,255)); fill(H[5]--Y--Z--H[0]--cycle^^H[2]--H[3]--X--cycle, rgb(203,153,255)); fill(H[1]--Z--X--H[2]--cycle^^H[4]--H[5]--Y--cycle, rgb(255,203,153)); fill(H[3]--X--Y--H[4]--cycle^^H[0]--H[1]--Z--cycle, rgb(153,203,255)); draw(hex^^X--Y--Z--cycle); draw(H[1]--B--H[2]^^H[3]--C--H[4]^^H[5]--A--H[0]^^A--B--C--cycle, linewidth(0.6)+linetype("5 5")); draw(H[0]--Z--H[1]^^H[2]--X--H[3]^^H[4]--Y--H[5]);[/asy]

1962 Putnam, A3

In a triangle $ABC$, let $A'$ be a point on the segment $BC$, $B'$ be a point on the segment $CA$ and $C'$ a point on the segment $AB$ such that $$ \frac{AB'}{B'C}= \frac{BC'}{C'A} =\frac{CA'}{A'B}=k,$$ where $k$ is a positive constant. Let $\triangle$ be the triangle formed by the interesctions of $AA'$, $BB'$ and $CC'$. Prove that the areas of $\triangle $ and $ABC$ are in the ratio $$\frac{(k-1)^{2}}{k^2 +k+1}.$$

2010 Romania Team Selection Test, 1

Each point of the plane is coloured in one of two colours. Given an odd integer number $n \geq 3$, prove that there exist (at least) two similar triangles whose similitude ratio is $n$, each of which has a monochromatic vertex-set. [i]Vasile Pop[/i]

2010 Math Prize For Girls Problems, 20

What is the value of the sum \[ \sum_z \frac{1}{{\left|1 - z\right|}^2} \, , \] where $z$ ranges over all 7 solutions (real and nonreal) of the equation $z^7 = -1$?

2007 F = Ma, 31

A thin, uniform rod has mass $m$ and length $L$. Let the acceleration due to gravity be $g$. Let the rotational inertia of the rod about its center be $md^2$. Find the ratio $L/d$. $ \textbf{(A)}\ 3\sqrt{2}\qquad\textbf{(B)}\ 3\qquad\textbf{(C)}\ 12\qquad\textbf{(D)}\ 2\sqrt{3}\qquad\textbf{(E)}\ \text{none of the above} $

2007 Abels Math Contest (Norwegian MO) Final, 2

The vertices of a convex pentagon $ABCDE$ lie on a circle $\gamma_1$. The diagonals $AC , CE, EB, BD$, and $DA$ are tangents to another circle $\gamma_2$ with the same centre as $\gamma_1$. (a) Show that all angles of the pentagon $ABCDE$ have the same size and that all edges of the pentagon have the same length. (b) What is the ratio of the radii of the circles $\gamma_1$ and $\gamma_2$? (The answer should be given in terms of integers, the four basic arithmetic operations and extraction of roots only.)

1996 Moscow Mathematical Olympiad, 4

Consider an equilateral triangle $\triangle ABC$. The points $K$ and $L$ divide the leg $BC$ into three equal parts, the point $M$ divides the leg $AC$ in the ratio $1:2$, counting from the vertex $A$. Prove that $\angle AKM+\angle ALM=30^{\circ}$. Proposed by V. Proizvolov

2003 AIME Problems, 6

In triangle $ABC,$ $AB=13,$ $BC=14,$ $AC=15,$ and point $G$ is the intersection of the medians. Points $A',$ $B',$ and $C',$ are the images of $A,$ $B,$ and $C,$ respectively, after a $180^\circ$ rotation about $G.$ What is the area if the union of the two regions enclosed by the triangles $ABC$ and $A'B'C'?$

1952 AMC 12/AHSME, 20

Tags: ratio
If $ \frac {x}{y} \equal{} \frac {3}{4}$, then the incorrect expression in the following is: $ \textbf{(A)}\ \frac {x \plus{} y}{y} \equal{} \frac {7}{4} \qquad\textbf{(B)}\ \frac {y}{y \minus{} x} \equal{} \frac {4}{1} \qquad\textbf{(C)}\ \frac {x \plus{} 2y}{x} \equal{} \frac {11}{3}$ $ \textbf{(D)}\ \frac {x}{2y} \equal{} \frac {3}{8} \qquad\textbf{(E)}\ \frac {x \minus{} y}{y} \equal{} \frac {1}{4}$

2011 Purple Comet Problems, 30

Four congruent spheres are stacked so that each is tangent to the other three. A larger sphere, $R$, contains the four congruent spheres so that all four are internally tangent to $R$. A smaller sphere, $S$, sits in the space between the four congruent spheres so that all four are externally tangent to $S$. The ratio of the surface area of $R$ to the surface area of $S$ can be written $m+\sqrt{n}$ where $m$ and $n$ are positive integers. Find $m + n$.

Ukrainian TYM Qualifying - geometry, 2020.10

In triangle $ABC$, point $I$ is the center, point $I_a$ is the center of the excircle tangent to the side $BC$. From the vertex $A$ inside the angle $BAC$ draw rays $AX$ and $AY$. The ray $AX$ intersects the lines $BI$, $CI$, $BI_a$, $CI_a$ at points $X_1$, $...$, $X_4$, respectively, and the ray $AY$ intersects the same lines at points $Y_1$, $...$, $Y_4$ respectively. It turned out that the points $X_1,X_2,Y_1,Y_2$ lie on the same circle. Prove the equality $$\frac{X_1X_2}{X_3X_4}= \frac{Y_1Y_2}{Y_3Y_4}.$$

1970 AMC 12/AHSME, 2

Tags: geometry , ratio
A square and a circle have equal perimeters. The ratio of the area of the circle to the area of the square is: $\textbf{(A) }\frac{4}{\pi}\qquad\textbf{(B) }\frac{\pi}{\sqrt{2}}\qquad\textbf{(C) }\frac{4}{1}\qquad\textbf{(D) }\frac{\sqrt{2}}{\pi}\qquad \textbf{(E) }\frac{\pi}{4}$

2002 Tuymaada Olympiad, 2

Points on the sides $ BC $, $ CA $ and $ AB $ of the triangle $ ABC $ are respectively $ A_1 $, $ B_1 $ and $ C_1 $ such that $ AC_1: C_1B = BA_1: A_1C = CB_1: B_1A = 2: 1 $. Prove that if triangle $ A_1B_1C_1 $ is equilateral, then triangle $ ABC $ is also equilateral.

2010 China Team Selection Test, 1

Let $\triangle ABC$ be an acute triangle, and let $D$ be the projection of $A$ on $BC$. Let $M,N$ be the midpoints of $AB$ and $AC$ respectively. Let $\Gamma_1$ and $\Gamma_2$ be the circumcircles of $\triangle BDM$ and $\triangle CDN$ respectively, and let $K$ be the other intersection point of $\Gamma_1$ and $\Gamma_2$. Let $P$ be an arbitrary point on $BC$ and $E,F$ are on $AC$ and $AB$ respectively such that $PEAF$ is a parallelogram. Prove that if $MN$ is a common tangent line of $\Gamma_1$ and $\Gamma_2$, then $K,E,A,F$ are concyclic.

2002 Moldova National Olympiad, 1

Tags: ratio
Volume $ A$ equals one fourth of the sum of the volumes $ B$ and $ C$, while volume $ B$ equals one sixth of the sum of the volumes $ C$ and $ A$. Find the ratio of the volume $ C$ to the sum of the volumes $ A$ and $ B$.

2010 AMC 12/AHSME, 17

Equiangular hexagon $ ABCDEF$ has side lengths $ AB \equal{} CD \equal{} EF \equal{} 1$ and $ BC \equal{} DE \equal{} FA \equal{} r$. The area of $ \triangle ACE$ is $70\%$ of the area of the hexagon. What is the sum of all possible values of $ r$? $ \textbf{(A)}\ \frac {4\sqrt {3}}{3} \qquad \textbf{(B)}\ \frac {10}{3} \qquad \textbf{(C)}\ 4 \qquad \textbf{(D)}\ \frac {17}{4} \qquad \textbf{(E)}\ 6$

1980 Vietnam National Olympiad, 1

Prove that for any tetrahedron in space, it is possible to find two perpendicular planes such that ratio between the projections of the tetrahedron on the two planes lies in the interval $[\frac{1}{\sqrt{2}}, \sqrt{2}].$

2007 Stanford Mathematics Tournament, 13

A rope of length 10 [i]m[/i] is tied tautly from the top of a flagpole to the ground 6 [i]m[/i] away from the base of the pole. An ant crawls up the rope and its shadow moves at a rate of 30 [i]cm/min[/i]. How many meters above the ground is the ant after 5 minutes? (This takes place on the summer solstice on the Tropic of Cancer so that the sun is directly overhead.)