This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 264

2012 All-Russian Olympiad, 4

The point $E$ is the midpoint of the segment connecting the orthocentre of the scalene triangle $ABC$ and the point $A$. The incircle of triangle $ABC$ incircle is tangent to $AB$ and $AC$ at points $C'$ and $B'$ respectively. Prove that point $F$, the point symmetric to point $E$ with respect to line $B'C'$, lies on the line that passes through both the circumcentre and the incentre of triangle $ABC$.

1953 Moscow Mathematical Olympiad, 245

A quadrilateral is circumscribed around a circle. Its diagonals intersect at the center of the circle. Prove that the quadrilateral is a rhombus.

2010 Contests, 1

Let $ABCD$ be a trapezoid with $AB // CD$, $2|AB| = |CD|$ and $BD \perp BC$. Let $M$ be the midpoint of $CD$ and let $E$ be the intersection $BC$ and $AD$. Let $O$ be the intersection of $AM$ and $BD$. Let $N$ be the intersection of $OE$ and $AB$. (a) Prove that $ABMD$ is a rhombus. (b) Prove that the line $DN$ passes through the midpoint of the line segment $BE$.

2020 Tournament Of Towns, 3

Let $ABCD$ be a rhombus, let $APQC$ be a parallelogram such that the point $B$ lies inside it and the side $AP$ is equal to the side of the rhombus. Prove that $B$ is the orthocenter of the triangle $DPQ$. Egor Bakaev

1999 AMC 12/AHSME, 16

What is the radius of a circle inscribed in a rhombus with diagonals of length $ 10$ and $ 24$? $ \textbf{(A)}\ 4 \qquad \textbf{(B)}\ 58/13 \qquad \textbf{(C)}\ 60/13 \qquad \textbf{(D)}\ 5 \qquad \textbf{(E)}\ 6$

2014 Contests, 1

Let $ABCD$ be a convex quadrilateral. Diagonals $AC$ and $BD$ meet at point $P$. The inradii of triangles $ABP$, $BCP$, $CDP$ and $DAP$ are equal. Prove that $ABCD$ is a rhombus.

1969 IMO Shortlist, 71

Tags: geometry , rhombus , angle
$(YUG 3)$ Let four points $A_i (i = 1, 2, 3, 4)$ in the plane determine four triangles. In each of these triangles we choose the smallest angle. The sum of these angles is denoted by $S.$ What is the exact placement of the points $A_i$ if $S = 180^{\circ}$?

1956 AMC 12/AHSME, 37

Tags: geometry , rhombus
On a map whose scale is $ 400$ miles to an inch and a half, a certain estate is represented by a rhombus having a $ 60^{\circ}$ angle. The diagonal opposite $ 60^{\circ}$ is $ \frac {3}{16}$ in. The area of the estate in square miles is: $ \textbf{(A)}\ \frac {2500}{\sqrt {3}} \qquad\textbf{(B)}\ \frac {1250}{\sqrt {3}} \qquad\textbf{(C)}\ 1250 \qquad\textbf{(D)}\ \frac {5625\sqrt {3}}{2} \qquad\textbf{(E)}\ 1250\sqrt {3}$

2007 Iran MO (3rd Round), 1

Let $ a,b$ be two complex numbers. Prove that roots of $ z^{4}\plus{}az^{2}\plus{}b$ form a rhombus with origin as center, if and only if $ \frac{a^{2}}{b}$ is a non-positive real number.

May Olympiad L1 - geometry, 2017.3

Tags: rhombus , area , geometry
Let $ABCD$ be a rhombus of sides $AB = BC = CD= DA = 13$. On the side $AB$ construct the rhombus $BAFE$ outside $ABCD$ and such that the side $AF$ is parallel to the diagonal $BD$ of $ABCD$. If the area of $BAFE$ is equal to $65$, calculate the area of $ABCD$.

2010 Albania Team Selection Test, 1

$ABC$ is an acute angle triangle such that $AB>AC$ and $\hat{BAC}=60^{\circ}$. Let's denote by $O$ the center of the circumscribed circle of the triangle and $H$ the intersection of altitudes of this triangle. Line $OH$ intersects $AB$ in point $P$ and $AC$ in point $Q$. Find the value of the ration $\frac{PO}{HQ}$.

1993 Baltic Way, 19

A convex quadrangle $ ABCD$ is inscribed in a circle with center $ O$. The angles $ AOB, BOC, COD$ and $ DOA$, taken in some order, are of the same size as the angles of the quadrangle $ ABCD$. Prove that $ ABCD$ is a square

2008 National Olympiad First Round, 33

Let $E$ be a point inside the rhombus $ABCD$ such that $|AE|=|EB|$, $m(\widehat{EAB})=12^\circ$, and $m(\widehat{DAE})=72^\circ$. What is $m(\widehat{CDE})$ in degrees? $ \textbf{(A)}\ 64 \qquad\textbf{(B)}\ 66 \qquad\textbf{(C)}\ 68 \qquad\textbf{(D)}\ 70 \qquad\textbf{(E)}\ 72 $

2001 Baltic Way, 9

Given a rhombus $ABCD$, find the locus of the points $P$ lying inside the rhombus and satisfying $\angle APD+\angle BPC=180^{\circ}$.

2004 Brazil National Olympiad, 1

Let $ABCD$ be a convex quadrilateral. Prove that the incircles of the triangles $ABC$, $BCD$, $CDA$ and $DAB$ have a point in common if, and only if, $ABCD$ is a rhombus.

2017 May Olympiad, 3

Tags: rhombus , area , geometry
Let $ABCD$ be a rhombus of sides $AB = BC = CD= DA = 13$. On the side $AB$ construct the rhombus $BAFE$ outside $ABCD$ and such that the side $AF$ is parallel to the diagonal $BD$ of $ABCD$. If the area of $BAFE$ is equal to $65$, calculate the area of $ABCD$.

2013 Stanford Mathematics Tournament, 4

$ABCD$ is a regular tetrahedron with side length $1$. Find the area of the cross section of $ABCD$ cut by the plane that passes through the midpoints of $AB$, $AC$, and $CD$.

2020 Canadian Junior Mathematical Olympiad, 4

Tags: geometry , rhombus
$ABCD$ is a fixed rhombus. Segment $PQ$ is tangent to the inscribed circle of $ABCD$, where $P$ is on side $AB$, $Q$ is on side $AD$. Show that, when segment $PQ$ is moving, the area of $\Delta CPQ$ is a constant.

2014 Iran MO (3rd Round), 4

Let $P$ be a regular $2n$-sided polygon. A [b]rhombus-ulation[/b] of $P$ is dividing $P$ into rhombuses such that no two intersect and no vertex of any rhombus is on the edge of other rhombuses or $P$. (a) Prove that number of rhombuses is a function of $n$. Find the value of this function. Also find the number of vertices and edges of the rhombuses as a function of $n$. (b) Prove or disprove that there always exists an edge $e$ of $P$ such that by erasing all the segments parallel to $e$ the remaining rhombuses are connected. (c) Is it true that each two rhombus-ulations can turn into each other using the following algorithm multiple times? Algorithm: Take a hexagon -not necessarily regular- consisting of 3 rhombuses and re-rhombus-ulate the hexagon. (d) Let $f(n)$ be the number of ways to rhombus-ulate $P$. Prove that:\[\Pi_{k=1}^{n-1} ( \binom{k}{2} +1) \leq f(n) \leq \Pi_{k=1}^{n-1} k^{n-k} \]

2006 Polish MO Finals, 3

Let $ABCDEF$ be a convex hexagon satisfying $AC=DF$, $CE=FB$ and $EA=BD$. Prove that the lines connecting the midpoints of opposite sides of the hexagon $ABCDEF$ intersect in one point.

1990 Tournament Of Towns, (250) 4

Let $ABCD$ be a rhombus and $P$ be a point on its side $BC$. The circle passing through $A, B$, and $P$ intersects $BD$ once more at the point $Q$ and the circle passing through $C,P$ and $Q$ intersects $BD$ once more at the point $R$. Prove that $A, R$ and $P$ lie on the one straight line. (D. Fomin, Leningrad)

2008 Thailand Mathematical Olympiad, 1

Let $P$ be a point outside a circle $\omega$. The tangents from $P$ to $\omega$ are drawn touching $\omega$ at points $A$ and $B$. Let $M$ and $N$ be the midpoints of $AP$ and $AB$, respectively. Line $MN$ is extended to cut $\omega$ at $C$ so that $N$ lies between $M$ and $C$. Line $PC$ intersects $\omega$ again at $D$, and lines $ND$ and $PB$ intersect at $O$. Prove that $MNOP$ is a rhombus.

2002 AIME Problems, 2

The diagram shows twenty congruent circles arranged in three rows and enclosed in a rectangle. The circles are tangent to one another and to the sides of the rectangle as shown in the diagram. The ratio of the longer dimension of the rectangle to the shorter dimension can be written as $\frac{1}{2}\left(\sqrt{p}-q\right),$ where $p$ and $q$ are positive integers. Find $p+q.$ [asy] size(250);real x=sqrt(3); int i; draw(origin--(14,0)--(14,2+2x)--(0,2+2x)--cycle); for(i=0; i<7; i=i+1) { draw(Circle((2*i+1,1), 1)^^Circle((2*i+1,1+2x), 1)); } for(i=0; i<6; i=i+1) { draw(Circle((2*i+2,1+x), 1)); }[/asy]

2010 Math Prize For Girls Problems, 11

Tags: rhombus , geometry
In the figure below, each side of the rhombus has length 5 centimeters. [asy] import graph; unitsize(2.0cm); real w = sqrt(3); draw((w, 0) -- (0, 1) -- (-w, 0) -- (0, -1) -- cycle); filldraw(Circle((-0.5, 0), 0.8 / sqrt(pi)), gray); label("$60^\circ$", (w - 0.1, 0), W); [/asy] The circle lies entirely within the rhombus. The area of the circle is $n$ square centimeters, where $n$ is a positive integer. Compute the number of possible values of $n$.

1996 Tournament Of Towns, (507) 4

A circle cuts each side of a rhombus twice thus dividing each side into three segments. Let us go around the perimeter of the rhombus clockwise beginning at a vertex and paint these segments successively in red, white and blue. Prove that the sum of lengths of the blue segments equals that of the red ones. (V Proizvolov)